Institute of Technology of Nuclear and Other Mineral Raw Materials
RITNMS - Repository of Institute of Technology of Nuclear and Other Mineral Raw Materials
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RITNMS
  • Institut za tehnologiju nuklearnih i drugih mineralnih sirovina
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RITNMS
  • Institut za tehnologiju nuklearnih i drugih mineralnih sirovina
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermal characterization of bioactive polyphosphate glass with strontium addition

Thumbnail
2023
bitstream_1273.pdf (349.0Kb)
Authors
Topalović, Vladimir
Matijašević, Srđan
Nikolić, Jelena
Savić, Veljko
Đošić, Marija
Grujić, sn
Contributors
Uskoković, Dragan P.
Conference object (Published version)
Metadata
Show full item record
Abstract
Polyphosphate glasses are a class of bioactive glasses that have gained significant attention in recent years due to their unique properties and potential applications in various fields, particularly in the area of biomedical engineering. These glasses exhibit excellent biocompatibility, which is a crucial requirement for biomaterials. Furthermore, their dissolution and degradation rates can be tailored by modifying their composition, allowing for control over their bioactivity and biodegradability. Polyphosphate glasses also have the ability to form a hydroxyapatite-like layer on their surface when in contact with biological fluids, which facilitates their integration with surrounding tissues. The unique properties of polyphosphate glasses make them promising candidates for various biomedical applications, including bone tissue engineering, drug delivery, and wound healing. This paper presents the thermal characterization of two bioactive polyphosphate glass compositions with the addi...tion of strontium, to investigate the sintering and crystallization processes. The samples were synthesized using the melt-quenching method and then sintered at various temperatures. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to analyze the thermal behavior and crystalline phases formed during sintering. Our results showed that sintering and crystallization are separate processes for both compositions. The addition of strontium to the glass improved its sintering behavior, resulting in a denser glass structure. Moreover, strontium incorporation did not affect the formation of the crystalline phase during sintering. These findings provide useful insights into the design and development of bioactive polyphosphate glass compositions for bone tissue engineering applications.

Source:
THE TWENTY-FOURTH ANNUAL CONFERENCE YUCOMAT 2023, 2023, 163-163
Publisher:
  • Belgrade : Materials Research Society of Serbia
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200023 (Institute of Technology of Nuclear and Other Mineral Row Materials - ITNMS, Belgrade) (RS-200023)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200135 (University of Belgrade, Faculty of Technology and Metallurgy) (RS-200135)
[ Google Scholar ]
URI
https://ritnms.itnms.ac.rs/handle/123456789/786
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za tehnologiju nuklearnih i drugih mineralnih sirovina
TY  - CONF
AU  - Topalović, Vladimir
AU  - Matijašević, Srđan
AU  - Nikolić, Jelena
AU  - Savić, Veljko
AU  - Đošić, Marija
AU  - Grujić, sn
PY  - 2023
UR  - https://ritnms.itnms.ac.rs/handle/123456789/786
AB  - Polyphosphate glasses are a class of bioactive glasses that have gained significant attention in recent years due to their unique properties and potential applications in various fields, particularly in the area of biomedical engineering. These glasses exhibit excellent biocompatibility, which is a crucial requirement for biomaterials. Furthermore, their dissolution and degradation rates can be tailored by modifying their composition, allowing for control over their bioactivity and biodegradability. Polyphosphate glasses also have the ability to form a hydroxyapatite-like layer on their surface when in contact with biological fluids, which facilitates their integration with surrounding tissues. The unique properties of polyphosphate glasses make them promising candidates for various biomedical applications, including bone tissue engineering, drug delivery, and wound healing. This paper presents the thermal characterization of two bioactive polyphosphate glass compositions with the addition of strontium, to investigate the sintering and crystallization processes. The samples were synthesized using the melt-quenching method and then sintered at various temperatures. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to analyze the thermal behavior and crystalline phases formed during sintering. Our results showed that sintering and crystallization are separate processes for both compositions. The addition of strontium to the glass improved its sintering behavior, resulting in a denser glass structure. Moreover, strontium incorporation did not affect the formation of the crystalline phase during sintering. These findings provide useful insights into the design and development of bioactive polyphosphate glass compositions for bone tissue engineering applications.
PB  - Belgrade : Materials Research Society of Serbia
C3  - THE TWENTY-FOURTH ANNUAL CONFERENCE YUCOMAT 2023
T1  - Thermal characterization of bioactive polyphosphate glass with strontium addition
EP  - 163
SP  - 163
ER  - 
@conference{
author = "Topalović, Vladimir and Matijašević, Srđan and Nikolić, Jelena and Savić, Veljko and Đošić, Marija and Grujić, sn",
year = "2023",
abstract = "Polyphosphate glasses are a class of bioactive glasses that have gained significant attention in recent years due to their unique properties and potential applications in various fields, particularly in the area of biomedical engineering. These glasses exhibit excellent biocompatibility, which is a crucial requirement for biomaterials. Furthermore, their dissolution and degradation rates can be tailored by modifying their composition, allowing for control over their bioactivity and biodegradability. Polyphosphate glasses also have the ability to form a hydroxyapatite-like layer on their surface when in contact with biological fluids, which facilitates their integration with surrounding tissues. The unique properties of polyphosphate glasses make them promising candidates for various biomedical applications, including bone tissue engineering, drug delivery, and wound healing. This paper presents the thermal characterization of two bioactive polyphosphate glass compositions with the addition of strontium, to investigate the sintering and crystallization processes. The samples were synthesized using the melt-quenching method and then sintered at various temperatures. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to analyze the thermal behavior and crystalline phases formed during sintering. Our results showed that sintering and crystallization are separate processes for both compositions. The addition of strontium to the glass improved its sintering behavior, resulting in a denser glass structure. Moreover, strontium incorporation did not affect the formation of the crystalline phase during sintering. These findings provide useful insights into the design and development of bioactive polyphosphate glass compositions for bone tissue engineering applications.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "THE TWENTY-FOURTH ANNUAL CONFERENCE YUCOMAT 2023",
title = "Thermal characterization of bioactive polyphosphate glass with strontium addition",
pages = "163-163"
}
Topalović, V., Matijašević, S., Nikolić, J., Savić, V., Đošić, M.,& Grujić, s.. (2023). Thermal characterization of bioactive polyphosphate glass with strontium addition. in THE TWENTY-FOURTH ANNUAL CONFERENCE YUCOMAT 2023
Belgrade : Materials Research Society of Serbia., 163-163.
Topalović V, Matijašević S, Nikolić J, Savić V, Đošić M, Grujić S. Thermal characterization of bioactive polyphosphate glass with strontium addition. in THE TWENTY-FOURTH ANNUAL CONFERENCE YUCOMAT 2023. 2023;:163-163..
Topalović, Vladimir, Matijašević, Srđan, Nikolić, Jelena, Savić, Veljko, Đošić, Marija, Grujić, sn, "Thermal characterization of bioactive polyphosphate glass with strontium addition" in THE TWENTY-FOURTH ANNUAL CONFERENCE YUCOMAT 2023 (2023):163-163.

DSpace software copyright © 2002-2015  DuraSpace
About the RITNMS repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the RITNMS repository | Send Feedback

OpenAIRERCUB