Institute of Technology of Nuclear and Other Mineral Raw Materials
RITNMS - Repository of Institute of Technology of Nuclear and Other Mineral Raw Materials
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RITNMS
  • Institut za tehnologiju nuklearnih i drugih mineralnih sirovina
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RITNMS
  • Institut za tehnologiju nuklearnih i drugih mineralnih sirovina
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Organophillipsite as potential low cost adsorbent for removal of ibuprofen

Thumbnail
2019
bitstream_1212.pdf (2.713Mb)
Authors
Spasojević, Milica
Daković, Aleksandra
Rottinghaus, George E.
Obradović, Milena
Krajišnik, Danina
Mercurio, Mariano
Smiljanić, Danijela
Contributors
Rakić, Vesna
Hrenović, Jasna
Ristić, Alenka
Conference object (Published version)
Metadata
Show full item record
Abstract
Zeolite – phillipsite was modified with long chain organic surfactant – hexadecyltrimethyl-ammonium bromide (HB). Two different amounts of HB were used to modify the zeolitic surface (150 % and 200% of phillisite external exchange capacity - ECEC). Adsorption of non-steroidal antiinflam matory drug – ibuprofen (IBU) was studied at pH 7, at different initial drug concentrations. Adsorption increased with increasing the initial drug concentrations as well as with increasing amounts of organic phase at the phillipsite surface. From the Langmuir model, the maximum IBU adsorption capacity for phillipsite modified with surfactant at 150 % of ECEC was 12.72 mg/g, while for organophillipsite containing surfactant in amount of 200 % of ECEC, the maximum adsorption capacity was 18.25 mg/g.
Keywords:
zeolite / phillipsite / surfactants / ibuprofen / adsorption
Source:
8th Serbian-Croatian-Slovenian Symposium on Zeolites, 2019, 122-125
Publisher:
  • Serbian Zeolite Association
Funding / projects:
  • Oxide-based environmentally-friendly porous materials for genotoxic substances removal (RS-172018)
  • Development of technological processes for obtaining of ecological materials based on nonmetallic minerals (RS-34013)

ISBN: 978-86-916637-2-8

[ Google Scholar ]
URI
https://ritnms.itnms.ac.rs/handle/123456789/739
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za tehnologiju nuklearnih i drugih mineralnih sirovina
TY  - CONF
AU  - Spasojević, Milica
AU  - Daković, Aleksandra
AU  - Rottinghaus, George E.
AU  - Obradović, Milena
AU  - Krajišnik, Danina
AU  - Mercurio, Mariano
AU  - Smiljanić, Danijela
PY  - 2019
UR  - https://ritnms.itnms.ac.rs/handle/123456789/739
AB  - Zeolite – phillipsite was modified with long chain organic surfactant – hexadecyltrimethyl-ammonium bromide (HB). Two different amounts of HB were used to modify the zeolitic surface (150 % and 200% of phillisite external exchange capacity - ECEC). Adsorption of non-steroidal antiinflam matory drug – ibuprofen (IBU) was studied at pH 7, at different initial drug concentrations. Adsorption increased with increasing the initial drug concentrations as well as with increasing amounts of organic phase at the phillipsite surface. From the Langmuir model, the maximum IBU adsorption capacity for phillipsite modified with surfactant at 150 % of ECEC was 12.72 mg/g, while for organophillipsite containing surfactant in amount of 200 % of ECEC, the maximum adsorption capacity was 18.25 mg/g.
PB  - Serbian Zeolite Association
C3  - 8th Serbian-Croatian-Slovenian Symposium on Zeolites
T1  - Organophillipsite as potential low cost adsorbent for removal of ibuprofen
EP  - 125
SP  - 122
ER  - 
@conference{
author = "Spasojević, Milica and Daković, Aleksandra and Rottinghaus, George E. and Obradović, Milena and Krajišnik, Danina and Mercurio, Mariano and Smiljanić, Danijela",
year = "2019",
abstract = "Zeolite – phillipsite was modified with long chain organic surfactant – hexadecyltrimethyl-ammonium bromide (HB). Two different amounts of HB were used to modify the zeolitic surface (150 % and 200% of phillisite external exchange capacity - ECEC). Adsorption of non-steroidal antiinflam matory drug – ibuprofen (IBU) was studied at pH 7, at different initial drug concentrations. Adsorption increased with increasing the initial drug concentrations as well as with increasing amounts of organic phase at the phillipsite surface. From the Langmuir model, the maximum IBU adsorption capacity for phillipsite modified with surfactant at 150 % of ECEC was 12.72 mg/g, while for organophillipsite containing surfactant in amount of 200 % of ECEC, the maximum adsorption capacity was 18.25 mg/g.",
publisher = "Serbian Zeolite Association",
journal = "8th Serbian-Croatian-Slovenian Symposium on Zeolites",
title = "Organophillipsite as potential low cost adsorbent for removal of ibuprofen",
pages = "125-122"
}
Spasojević, M., Daković, A., Rottinghaus, G. E., Obradović, M., Krajišnik, D., Mercurio, M.,& Smiljanić, D.. (2019). Organophillipsite as potential low cost adsorbent for removal of ibuprofen. in 8th Serbian-Croatian-Slovenian Symposium on Zeolites
Serbian Zeolite Association., 122-125.
Spasojević M, Daković A, Rottinghaus GE, Obradović M, Krajišnik D, Mercurio M, Smiljanić D. Organophillipsite as potential low cost adsorbent for removal of ibuprofen. in 8th Serbian-Croatian-Slovenian Symposium on Zeolites. 2019;:122-125..
Spasojević, Milica, Daković, Aleksandra, Rottinghaus, George E., Obradović, Milena, Krajišnik, Danina, Mercurio, Mariano, Smiljanić, Danijela, "Organophillipsite as potential low cost adsorbent for removal of ibuprofen" in 8th Serbian-Croatian-Slovenian Symposium on Zeolites (2019):122-125.

DSpace software copyright © 2002-2015  DuraSpace
About the RITNMS repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the RITNMS repository | Send Feedback

OpenAIRERCUB