Analysis of the Mechanism of Acid Mine Drainage Neutralization Using Fly Ash as an Alternative Material: A Case Study of the Extremely Acidic Lake Robule in Eastern Serbia

2022
Authors
Petronijević, Nela
Radovanović, Dragana

Stulović, Marija
Sokić, Miroslav

Jovanović, Gvozden

Kamberović, Željko

Stanković, Srđan

Stopić, Srećko

Onjia, Antonije

Article (Published version)
Metadata
Show full item recordAbstract
Acid mine drainage (AMD) is a waste from mining sites, usually acidic, with high concentrations of sulfates and heavy metal ions. This study investigates the AMD neutralization process using fly ash (FA) as an alternative material. Samples of FA from coal-fired power plants in Serbia ("Nikola Tesla" (EF) and "Kostolac" (KOST)) were analyzed and used. The results were compared with the treatment efficiency of commercial neutralization agent (NaOH). The alkaline nature of FA was the basis for use in the treatment process of the extremely acid Lake Robule (pH 2.46), located in the mining areas of eastern Serbia. The optimal S/L ratio for the AMD neutralization process determined for EF was 25 wt.%, and for KOST it was 20 wt.%. The mechanism of the neutralization process was analyzed using the ANC test and PHREEQC program. The element concentrations and pH values in solutions indicated that FA samples could neutralize Lake Robule with more than 99% of Al, Fe, Cu, Zn, and more than 89% of P...b precipitated. Formation of insoluble (oxy)hydroxide forms (Fe3+ and Al3+ ions) creates favorable conditions for co-precipitation of other trace metals (Cu, Zn, Ni, Pb, and Cd) from AMD, which is further enhanced by cation adsorption on FA particles. FA proved to be a more effective neutralization agent than NaOH due to its adsorption effect, while among the FA samples, KOST was more effective due to the aging process through the carbonization reaction. Using FA as an alternative material is a promising and sustainable method for treating AMD, with economic and environmental benefits.
Keywords:
zero waste / synergy of waste reuse / safe discharge of waste / reuse waste / fly ash / AMD treatment / acid mine drainage (AMD)Source:
Water, 2022, 14, 20Publisher:
- MDPI, Basel
Funding / projects:
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200023 (Institute of Technology of Nuclear and Other Mineral Row Materials - ITNMS, Belgrade) (RS-200023)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200135 (University of Belgrade, Faculty of Technology and Metallurgy) (RS-200135)
DOI: 10.3390/w14203244
ISSN: 2073-4441
WoS: 000873850100001
Scopus: 2-s2.0-85140880015
Collections
Institution/Community
Institut za tehnologiju nuklearnih i drugih mineralnih sirovinaTY - JOUR AU - Petronijević, Nela AU - Radovanović, Dragana AU - Stulović, Marija AU - Sokić, Miroslav AU - Jovanović, Gvozden AU - Kamberović, Željko AU - Stanković, Srđan AU - Stopić, Srećko AU - Onjia, Antonije PY - 2022 UR - https://ritnms.itnms.ac.rs/handle/123456789/616 AB - Acid mine drainage (AMD) is a waste from mining sites, usually acidic, with high concentrations of sulfates and heavy metal ions. This study investigates the AMD neutralization process using fly ash (FA) as an alternative material. Samples of FA from coal-fired power plants in Serbia ("Nikola Tesla" (EF) and "Kostolac" (KOST)) were analyzed and used. The results were compared with the treatment efficiency of commercial neutralization agent (NaOH). The alkaline nature of FA was the basis for use in the treatment process of the extremely acid Lake Robule (pH 2.46), located in the mining areas of eastern Serbia. The optimal S/L ratio for the AMD neutralization process determined for EF was 25 wt.%, and for KOST it was 20 wt.%. The mechanism of the neutralization process was analyzed using the ANC test and PHREEQC program. The element concentrations and pH values in solutions indicated that FA samples could neutralize Lake Robule with more than 99% of Al, Fe, Cu, Zn, and more than 89% of Pb precipitated. Formation of insoluble (oxy)hydroxide forms (Fe3+ and Al3+ ions) creates favorable conditions for co-precipitation of other trace metals (Cu, Zn, Ni, Pb, and Cd) from AMD, which is further enhanced by cation adsorption on FA particles. FA proved to be a more effective neutralization agent than NaOH due to its adsorption effect, while among the FA samples, KOST was more effective due to the aging process through the carbonization reaction. Using FA as an alternative material is a promising and sustainable method for treating AMD, with economic and environmental benefits. PB - MDPI, Basel T2 - Water T1 - Analysis of the Mechanism of Acid Mine Drainage Neutralization Using Fly Ash as an Alternative Material: A Case Study of the Extremely Acidic Lake Robule in Eastern Serbia IS - 20 VL - 14 DO - 10.3390/w14203244 UR - conv_955 ER -
@article{ author = "Petronijević, Nela and Radovanović, Dragana and Stulović, Marija and Sokić, Miroslav and Jovanović, Gvozden and Kamberović, Željko and Stanković, Srđan and Stopić, Srećko and Onjia, Antonije", year = "2022", abstract = "Acid mine drainage (AMD) is a waste from mining sites, usually acidic, with high concentrations of sulfates and heavy metal ions. This study investigates the AMD neutralization process using fly ash (FA) as an alternative material. Samples of FA from coal-fired power plants in Serbia ("Nikola Tesla" (EF) and "Kostolac" (KOST)) were analyzed and used. The results were compared with the treatment efficiency of commercial neutralization agent (NaOH). The alkaline nature of FA was the basis for use in the treatment process of the extremely acid Lake Robule (pH 2.46), located in the mining areas of eastern Serbia. The optimal S/L ratio for the AMD neutralization process determined for EF was 25 wt.%, and for KOST it was 20 wt.%. The mechanism of the neutralization process was analyzed using the ANC test and PHREEQC program. The element concentrations and pH values in solutions indicated that FA samples could neutralize Lake Robule with more than 99% of Al, Fe, Cu, Zn, and more than 89% of Pb precipitated. Formation of insoluble (oxy)hydroxide forms (Fe3+ and Al3+ ions) creates favorable conditions for co-precipitation of other trace metals (Cu, Zn, Ni, Pb, and Cd) from AMD, which is further enhanced by cation adsorption on FA particles. FA proved to be a more effective neutralization agent than NaOH due to its adsorption effect, while among the FA samples, KOST was more effective due to the aging process through the carbonization reaction. Using FA as an alternative material is a promising and sustainable method for treating AMD, with economic and environmental benefits.", publisher = "MDPI, Basel", journal = "Water", title = "Analysis of the Mechanism of Acid Mine Drainage Neutralization Using Fly Ash as an Alternative Material: A Case Study of the Extremely Acidic Lake Robule in Eastern Serbia", number = "20", volume = "14", doi = "10.3390/w14203244", url = "conv_955" }
Petronijević, N., Radovanović, D., Stulović, M., Sokić, M., Jovanović, G., Kamberović, Ž., Stanković, S., Stopić, S.,& Onjia, A.. (2022). Analysis of the Mechanism of Acid Mine Drainage Neutralization Using Fly Ash as an Alternative Material: A Case Study of the Extremely Acidic Lake Robule in Eastern Serbia. in Water MDPI, Basel., 14(20). https://doi.org/10.3390/w14203244 conv_955
Petronijević N, Radovanović D, Stulović M, Sokić M, Jovanović G, Kamberović Ž, Stanković S, Stopić S, Onjia A. Analysis of the Mechanism of Acid Mine Drainage Neutralization Using Fly Ash as an Alternative Material: A Case Study of the Extremely Acidic Lake Robule in Eastern Serbia. in Water. 2022;14(20). doi:10.3390/w14203244 conv_955 .
Petronijević, Nela, Radovanović, Dragana, Stulović, Marija, Sokić, Miroslav, Jovanović, Gvozden, Kamberović, Željko, Stanković, Srđan, Stopić, Srećko, Onjia, Antonije, "Analysis of the Mechanism of Acid Mine Drainage Neutralization Using Fly Ash as an Alternative Material: A Case Study of the Extremely Acidic Lake Robule in Eastern Serbia" in Water, 14, no. 20 (2022), https://doi.org/10.3390/w14203244 ., conv_955 .