Repository of Institute of Technology of Nuclear and Other Mineral Raw Materials
RITNMS - Repository of Institute of Technology of Nuclear and Other Mineral Raw Materials
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RITNMS
  • Institut za tehnologiju nuklearnih i drugih mineralnih sirovina
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RITNMS
  • Institut za tehnologiju nuklearnih i drugih mineralnih sirovina
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Circular economy implementation in the development of fire-retardant materials used in construction, industry, and general-purpose products

Thumbnail
2022
606.pdf (502.2Kb)
Authors
Ben Omran, Kaled Mohamed
Shwika, Salem Ibrahim
Vuksanović, Marija M.
Marinković, Aleksandar D.
Jovanović, Aleksandar
Prlainović, Nevena
Vasilski, Dragana
Article (Published version)
Metadata
Show full item record
Abstract
During a fire, passive fire protection systems are designed to prevent the spread of flames, smoke, and toxic gases. The new fire-retardant (FR) material, used for passive fire protection, is created by combining copolymers (VC-co-VAc) (Slovinyl KV 173) and PVC K70 with expanded graphite and plasticizers/modifiers such as diisononyl phthalate - DINP, diisononyl terephthalate - DINTP, dioctyl adipate - DOA, as well as plasticizers that are synthesized based on tertiary recycling of waste poly(ethylene terephthalate) (PET), 1-hexadecene, azodicarbonamide (ADC), tri(p-cresyl phosphate), epoxidized soybean oil (ESO) and acrylate emulsion (DH50, Ecrylic, or Flexryl, etc.). The obtained material's morphology was examined using an emission scanning electron microscope (FESEM) field. Tensile testing was used to determine the mechanical properties of the obtained samples, as well as Shore A hardness and toughness using the Charpy impact test. All samples obtained were tested according to non-fl...ammability standards. To conform to the new trend of "green economy," the development of novel eco-friendly FRs with improved thermal and mechanical properties will include careful consideration of environmental protection and sustainable development.

Keywords:
PET / mechanical properties / flame retardants / expanding material
Source:
Metallurgical & Materials Engineering, 2022, 28, 2, 369-379
Publisher:
  • Savez inženjera metalurgije Srbije, Beograd
Funding / projects:
  • Innovation Fund of the Republic of Serbia and Smart Fire Blocks Innovation (Project "Smart Fire Protection -1297")
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200135 (University of Belgrade, Faculty of Technology and Metallurgy) (RS-200135)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) (RS-200017)

DOI: 10.30544/768

ISSN: 2217-8961

WoS: 000822349400007

Scopus: 2-s2.0-85133724963
[ Google Scholar ]
URI
https://ritnms.itnms.ac.rs/handle/123456789/609
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za tehnologiju nuklearnih i drugih mineralnih sirovina
TY  - JOUR
AU  - Ben Omran, Kaled Mohamed
AU  - Shwika, Salem Ibrahim
AU  - Vuksanović, Marija M.
AU  - Marinković, Aleksandar D.
AU  - Jovanović, Aleksandar
AU  - Prlainović, Nevena
AU  - Vasilski, Dragana
PY  - 2022
UR  - https://ritnms.itnms.ac.rs/handle/123456789/609
AB  - During a fire, passive fire protection systems are designed to prevent the spread of flames, smoke, and toxic gases. The new fire-retardant (FR) material, used for passive fire protection, is created by combining copolymers (VC-co-VAc) (Slovinyl KV 173) and PVC K70 with expanded graphite and plasticizers/modifiers such as diisononyl phthalate - DINP, diisononyl terephthalate - DINTP, dioctyl adipate - DOA, as well as plasticizers that are synthesized based on tertiary recycling of waste poly(ethylene terephthalate) (PET), 1-hexadecene, azodicarbonamide (ADC), tri(p-cresyl phosphate), epoxidized soybean oil (ESO) and acrylate emulsion (DH50, Ecrylic, or Flexryl, etc.). The obtained material's morphology was examined using an emission scanning electron microscope (FESEM) field. Tensile testing was used to determine the mechanical properties of the obtained samples, as well as Shore A hardness and toughness using the Charpy impact test. All samples obtained were tested according to non-flammability standards. To conform to the new trend of "green economy," the development of novel eco-friendly FRs with improved thermal and mechanical properties will include careful consideration of environmental protection and sustainable development.
PB  - Savez inženjera metalurgije Srbije, Beograd
T2  - Metallurgical & Materials Engineering
T1  - Circular economy implementation in the development of fire-retardant materials used in construction, industry, and general-purpose products
EP  - 379
IS  - 2
SP  - 369
VL  - 28
DO  - 10.30544/768
UR  - conv_947
ER  - 
@article{
author = "Ben Omran, Kaled Mohamed and Shwika, Salem Ibrahim and Vuksanović, Marija M. and Marinković, Aleksandar D. and Jovanović, Aleksandar and Prlainović, Nevena and Vasilski, Dragana",
year = "2022",
abstract = "During a fire, passive fire protection systems are designed to prevent the spread of flames, smoke, and toxic gases. The new fire-retardant (FR) material, used for passive fire protection, is created by combining copolymers (VC-co-VAc) (Slovinyl KV 173) and PVC K70 with expanded graphite and plasticizers/modifiers such as diisononyl phthalate - DINP, diisononyl terephthalate - DINTP, dioctyl adipate - DOA, as well as plasticizers that are synthesized based on tertiary recycling of waste poly(ethylene terephthalate) (PET), 1-hexadecene, azodicarbonamide (ADC), tri(p-cresyl phosphate), epoxidized soybean oil (ESO) and acrylate emulsion (DH50, Ecrylic, or Flexryl, etc.). The obtained material's morphology was examined using an emission scanning electron microscope (FESEM) field. Tensile testing was used to determine the mechanical properties of the obtained samples, as well as Shore A hardness and toughness using the Charpy impact test. All samples obtained were tested according to non-flammability standards. To conform to the new trend of "green economy," the development of novel eco-friendly FRs with improved thermal and mechanical properties will include careful consideration of environmental protection and sustainable development.",
publisher = "Savez inženjera metalurgije Srbije, Beograd",
journal = "Metallurgical & Materials Engineering",
title = "Circular economy implementation in the development of fire-retardant materials used in construction, industry, and general-purpose products",
pages = "379-369",
number = "2",
volume = "28",
doi = "10.30544/768",
url = "conv_947"
}
Ben Omran, K. M., Shwika, S. I., Vuksanović, M. M., Marinković, A. D., Jovanović, A., Prlainović, N.,& Vasilski, D.. (2022). Circular economy implementation in the development of fire-retardant materials used in construction, industry, and general-purpose products. in Metallurgical & Materials Engineering
Savez inženjera metalurgije Srbije, Beograd., 28(2), 369-379.
https://doi.org/10.30544/768
conv_947
Ben Omran KM, Shwika SI, Vuksanović MM, Marinković AD, Jovanović A, Prlainović N, Vasilski D. Circular economy implementation in the development of fire-retardant materials used in construction, industry, and general-purpose products. in Metallurgical & Materials Engineering. 2022;28(2):369-379.
doi:10.30544/768
conv_947 .
Ben Omran, Kaled Mohamed, Shwika, Salem Ibrahim, Vuksanović, Marija M., Marinković, Aleksandar D., Jovanović, Aleksandar, Prlainović, Nevena, Vasilski, Dragana, "Circular economy implementation in the development of fire-retardant materials used in construction, industry, and general-purpose products" in Metallurgical & Materials Engineering, 28, no. 2 (2022):369-379,
https://doi.org/10.30544/768 .,
conv_947 .

DSpace software copyright © 2002-2015  DuraSpace
About the RITNMS repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the RITNMS repository | Send Feedback

OpenAIRERCUB