Influence of selective acid-etching on functionality of halloysite-chitosan nanocontainers for sustained drug release
No Thumbnail
Authors
Jauković, ValentinaKrajišnik, Danina

Daković, Aleksandra

Damjanović, Ana
Krstić, Jugoslav

Stojanović, Jovica

Calija, Bojan

Article (Published version)

Metadata
Show full item recordAbstract
The functionality of halloysite (Hal) nanotubes as drug carriers can be improved by lumen enlargement and polymer modification. This study investigates the influence of selective acid etching on Hal functionalization with cationic biopolymer chitosan. Hal was subjected to lumen etching under mild conditions, loaded under vacuum with nonsteroidal antiinflammatory drug aceclofenac, and incubated in an acidic solution of chitosan. The functionality of pristine and etched Hal before and upon polymer functionalization was assessed by ?-potential measurements, structural characterization (FT-IR, DSC and XRPD analysis), cell viability assay, drug loading and drug release studies. Acid etching increased specific surface area, pore volume and pore size of Hal, decreased ?-potential and facilitated binding of the cationic polymer. XRPD and DSC analysis revealed crystalline structure of etched Hal. Successful chitosan binding and drug entrapment were further confirmed by FT-IR and DSC studies. XR...PD showed surface polymer binding. DSC and FT-IR analyses confirmed the presence of the entrapped drug in its crystalline form. Drug loading was increased for ?81% by selective lumen etching. Slight decrease of drug content occurred during chitosan functionalization due to aceclofenac diffusion in the polymer solution. The drug release was more sustained from etched Hal nanocomposites (up to ?87% for 12 h) than from pristine Hal (up to ?97% for 12 h) due to more intensive chitosan binding. High human fibroblast survival rates upon exposure to pristine and etched Hal before and after chitosan functionalization (>90% in the concentration of 1000 ?g/mL) confirmed that both lumen etching under mild conditions and polymer functionalization had no significant effect on cytocompatibility. Based on these findings, selective lumen etching in combination with polycation modification appears to be a promising approach for improvement of Hal nanotubes functionality by increasing payload, polymer binding capacity, and sustained release properties with no significant effect on their cytocompatibility.
Keywords:
Sustained release / Nanocomposites / Halloysite nanotubes / Etching / Chitosan / AceclofenacSource:
Materials Science & Engineering C-Materials for Biological Applications, 2021, 123Publisher:
- Elsevier, Amsterdam
Funding / projects:
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200161 (University of Belgrade, Faculty of Pharmacy) (RS-200161)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200043 (Institute of Oncology and Radiology of Serbia, Belgrade) (RS-200043)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200023 (Institute of Technology of Nuclear and Other Mineral Row Materials - ITNMS, Belgrade) (RS-200023)
DOI: 10.1016/j.msec.2021.112029
ISSN: 0928-4931
PubMed: 33812644
WoS: 000636846100003
Scopus: 2-s2.0-85102582860
Collections
Institution/Community
Institut za tehnologiju nuklearnih i drugih mineralnih sirovinaTY - JOUR AU - Jauković, Valentina AU - Krajišnik, Danina AU - Daković, Aleksandra AU - Damjanović, Ana AU - Krstić, Jugoslav AU - Stojanović, Jovica AU - Calija, Bojan PY - 2021 UR - https://ritnms.itnms.ac.rs/handle/123456789/598 AB - The functionality of halloysite (Hal) nanotubes as drug carriers can be improved by lumen enlargement and polymer modification. This study investigates the influence of selective acid etching on Hal functionalization with cationic biopolymer chitosan. Hal was subjected to lumen etching under mild conditions, loaded under vacuum with nonsteroidal antiinflammatory drug aceclofenac, and incubated in an acidic solution of chitosan. The functionality of pristine and etched Hal before and upon polymer functionalization was assessed by ?-potential measurements, structural characterization (FT-IR, DSC and XRPD analysis), cell viability assay, drug loading and drug release studies. Acid etching increased specific surface area, pore volume and pore size of Hal, decreased ?-potential and facilitated binding of the cationic polymer. XRPD and DSC analysis revealed crystalline structure of etched Hal. Successful chitosan binding and drug entrapment were further confirmed by FT-IR and DSC studies. XRPD showed surface polymer binding. DSC and FT-IR analyses confirmed the presence of the entrapped drug in its crystalline form. Drug loading was increased for ?81% by selective lumen etching. Slight decrease of drug content occurred during chitosan functionalization due to aceclofenac diffusion in the polymer solution. The drug release was more sustained from etched Hal nanocomposites (up to ?87% for 12 h) than from pristine Hal (up to ?97% for 12 h) due to more intensive chitosan binding. High human fibroblast survival rates upon exposure to pristine and etched Hal before and after chitosan functionalization (>90% in the concentration of 1000 ?g/mL) confirmed that both lumen etching under mild conditions and polymer functionalization had no significant effect on cytocompatibility. Based on these findings, selective lumen etching in combination with polycation modification appears to be a promising approach for improvement of Hal nanotubes functionality by increasing payload, polymer binding capacity, and sustained release properties with no significant effect on their cytocompatibility. PB - Elsevier, Amsterdam T2 - Materials Science & Engineering C-Materials for Biological Applications T1 - Influence of selective acid-etching on functionality of halloysite-chitosan nanocontainers for sustained drug release VL - 123 DO - 10.1016/j.msec.2021.112029 UR - conv_907 ER -
@article{ author = "Jauković, Valentina and Krajišnik, Danina and Daković, Aleksandra and Damjanović, Ana and Krstić, Jugoslav and Stojanović, Jovica and Calija, Bojan", year = "2021", abstract = "The functionality of halloysite (Hal) nanotubes as drug carriers can be improved by lumen enlargement and polymer modification. This study investigates the influence of selective acid etching on Hal functionalization with cationic biopolymer chitosan. Hal was subjected to lumen etching under mild conditions, loaded under vacuum with nonsteroidal antiinflammatory drug aceclofenac, and incubated in an acidic solution of chitosan. The functionality of pristine and etched Hal before and upon polymer functionalization was assessed by ?-potential measurements, structural characterization (FT-IR, DSC and XRPD analysis), cell viability assay, drug loading and drug release studies. Acid etching increased specific surface area, pore volume and pore size of Hal, decreased ?-potential and facilitated binding of the cationic polymer. XRPD and DSC analysis revealed crystalline structure of etched Hal. Successful chitosan binding and drug entrapment were further confirmed by FT-IR and DSC studies. XRPD showed surface polymer binding. DSC and FT-IR analyses confirmed the presence of the entrapped drug in its crystalline form. Drug loading was increased for ?81% by selective lumen etching. Slight decrease of drug content occurred during chitosan functionalization due to aceclofenac diffusion in the polymer solution. The drug release was more sustained from etched Hal nanocomposites (up to ?87% for 12 h) than from pristine Hal (up to ?97% for 12 h) due to more intensive chitosan binding. High human fibroblast survival rates upon exposure to pristine and etched Hal before and after chitosan functionalization (>90% in the concentration of 1000 ?g/mL) confirmed that both lumen etching under mild conditions and polymer functionalization had no significant effect on cytocompatibility. Based on these findings, selective lumen etching in combination with polycation modification appears to be a promising approach for improvement of Hal nanotubes functionality by increasing payload, polymer binding capacity, and sustained release properties with no significant effect on their cytocompatibility.", publisher = "Elsevier, Amsterdam", journal = "Materials Science & Engineering C-Materials for Biological Applications", title = "Influence of selective acid-etching on functionality of halloysite-chitosan nanocontainers for sustained drug release", volume = "123", doi = "10.1016/j.msec.2021.112029", url = "conv_907" }
Jauković, V., Krajišnik, D., Daković, A., Damjanović, A., Krstić, J., Stojanović, J.,& Calija, B.. (2021). Influence of selective acid-etching on functionality of halloysite-chitosan nanocontainers for sustained drug release. in Materials Science & Engineering C-Materials for Biological Applications Elsevier, Amsterdam., 123. https://doi.org/10.1016/j.msec.2021.112029 conv_907
Jauković V, Krajišnik D, Daković A, Damjanović A, Krstić J, Stojanović J, Calija B. Influence of selective acid-etching on functionality of halloysite-chitosan nanocontainers for sustained drug release. in Materials Science & Engineering C-Materials for Biological Applications. 2021;123. doi:10.1016/j.msec.2021.112029 conv_907 .
Jauković, Valentina, Krajišnik, Danina, Daković, Aleksandra, Damjanović, Ana, Krstić, Jugoslav, Stojanović, Jovica, Calija, Bojan, "Influence of selective acid-etching on functionality of halloysite-chitosan nanocontainers for sustained drug release" in Materials Science & Engineering C-Materials for Biological Applications, 123 (2021), https://doi.org/10.1016/j.msec.2021.112029 ., conv_907 .