Influence of surface coverage of kaolin with surfactant ions on adsorption of ochratoxin A and zearalenone
No Thumbnail
Authors
Spasojević, Milica
Daković, Aleksandra

Rottinghaus, George E.
Obradović, Milena

Krajišnik, Danina

Marković, Marija

Krstić, Jugoslav

Article (Published version)

Metadata
Show full item recordAbstract
A natural kaolin from Serbia was modified with different amounts of octadecyldimethylbenzyl ammonium (ODMBA) - (25, 50 and 90% of kaolin cation exchange capacity). Samples were denoted as OKR-25, OKR-50 and OKR-90. Several methods (FTIR spectroscopy, thermal analysis, zeta potential measurements, and N2 physisorption) were used for characterization of the organokaolinites. Adsorption of the common mycotoxins ochratoxin A (OCHRA) and zearalenone (ZEN) by the organokaolinites was investigated at different levels of solid phase in suspension, different initial mycotoxin concentrations and different pH values. The natural kaolin was not effective in binding OCHRA or ZEN. Adsorption of both mycotoxins by organokaolinites increased with increasing amounts of solid phase as well as with increasing levels of surfactant on the kaolin surface. OCHRA and ZEN adsorption by all organokaolinites followed non-linear adsorption isotherms, at pH 3, 7 and 9. The maximum adsorption capacity for OCHRA ads...orption was at pH 3 (4.8 mg/g for OKR-25, 26.7 mg/g for OKR-50 and 39.2 mg/g for OKR-90) that was calculated from the Langmuir model. Much lower OCHRA adsorption capacities were found at pH 7 and 9 (from 0.8 mg/g to 6.9 mg/g at pH 7 and from 1.1 mg/g to 4.6 mg/g at pH 9). The following adsorption capacities for ZEN were obtained from the Langmuir isotherms, at pH 3: 4.5 mg/g for OKR-25, 12.0 mg/g for OKR-50 and 13.5 mg/g for OKR-90. At pH 7, adsorption of ZEN was 5.7 mg/g for OKR25, 15.3 mg/g for OKR-90 and 14. 4 mg/g for OKR-90. At pH 9, ZEN adsorption capacities were 2.4, 14.1 and 8.1 mg/g for OKR-25, OKR-50 and OKR-90, respectively. Thus, at the lowest amount of ODMBA at the kaolin surface, adsorption of ZEN was similar at pH 3 and 7, while a slightly lower value was obtained for its adsorption at pH 9. With increasing amounts of organic phase at the kaolin surface, the adsorption of ZEN was practically independent of pH. Adsorption of both mycotoxins was dependent on the amount of ODMBA ions at the kaolin surface as well as on their forms in solution.
Keywords:
Zearalenone / Surfactant / Ochratoxin A / Mycotoxins / Kaolin / AdsorptionSource:
Applied Clay Science, 2021, 205Publisher:
- Elsevier, Amsterdam
Funding / projects:
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200023 (Institute of Technology of Nuclear and Other Mineral Row Materials - ITNMS, Belgrade) (RS-200023)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200161 (University of Belgrade, Faculty of Pharmacy) (RS-200161)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
DOI: 10.1016/j.clay.2021.106040
ISSN: 0169-1317
WoS: 000647564700009
Scopus: 2-s2.0-85102275089
Collections
Institution/Community
Institut za tehnologiju nuklearnih i drugih mineralnih sirovinaTY - JOUR AU - Spasojević, Milica AU - Daković, Aleksandra AU - Rottinghaus, George E. AU - Obradović, Milena AU - Krajišnik, Danina AU - Marković, Marija AU - Krstić, Jugoslav PY - 2021 UR - https://ritnms.itnms.ac.rs/handle/123456789/573 AB - A natural kaolin from Serbia was modified with different amounts of octadecyldimethylbenzyl ammonium (ODMBA) - (25, 50 and 90% of kaolin cation exchange capacity). Samples were denoted as OKR-25, OKR-50 and OKR-90. Several methods (FTIR spectroscopy, thermal analysis, zeta potential measurements, and N2 physisorption) were used for characterization of the organokaolinites. Adsorption of the common mycotoxins ochratoxin A (OCHRA) and zearalenone (ZEN) by the organokaolinites was investigated at different levels of solid phase in suspension, different initial mycotoxin concentrations and different pH values. The natural kaolin was not effective in binding OCHRA or ZEN. Adsorption of both mycotoxins by organokaolinites increased with increasing amounts of solid phase as well as with increasing levels of surfactant on the kaolin surface. OCHRA and ZEN adsorption by all organokaolinites followed non-linear adsorption isotherms, at pH 3, 7 and 9. The maximum adsorption capacity for OCHRA adsorption was at pH 3 (4.8 mg/g for OKR-25, 26.7 mg/g for OKR-50 and 39.2 mg/g for OKR-90) that was calculated from the Langmuir model. Much lower OCHRA adsorption capacities were found at pH 7 and 9 (from 0.8 mg/g to 6.9 mg/g at pH 7 and from 1.1 mg/g to 4.6 mg/g at pH 9). The following adsorption capacities for ZEN were obtained from the Langmuir isotherms, at pH 3: 4.5 mg/g for OKR-25, 12.0 mg/g for OKR-50 and 13.5 mg/g for OKR-90. At pH 7, adsorption of ZEN was 5.7 mg/g for OKR25, 15.3 mg/g for OKR-90 and 14. 4 mg/g for OKR-90. At pH 9, ZEN adsorption capacities were 2.4, 14.1 and 8.1 mg/g for OKR-25, OKR-50 and OKR-90, respectively. Thus, at the lowest amount of ODMBA at the kaolin surface, adsorption of ZEN was similar at pH 3 and 7, while a slightly lower value was obtained for its adsorption at pH 9. With increasing amounts of organic phase at the kaolin surface, the adsorption of ZEN was practically independent of pH. Adsorption of both mycotoxins was dependent on the amount of ODMBA ions at the kaolin surface as well as on their forms in solution. PB - Elsevier, Amsterdam T2 - Applied Clay Science T1 - Influence of surface coverage of kaolin with surfactant ions on adsorption of ochratoxin A and zearalenone VL - 205 DO - 10.1016/j.clay.2021.106040 UR - conv_909 ER -
@article{ author = "Spasojević, Milica and Daković, Aleksandra and Rottinghaus, George E. and Obradović, Milena and Krajišnik, Danina and Marković, Marija and Krstić, Jugoslav", year = "2021", abstract = "A natural kaolin from Serbia was modified with different amounts of octadecyldimethylbenzyl ammonium (ODMBA) - (25, 50 and 90% of kaolin cation exchange capacity). Samples were denoted as OKR-25, OKR-50 and OKR-90. Several methods (FTIR spectroscopy, thermal analysis, zeta potential measurements, and N2 physisorption) were used for characterization of the organokaolinites. Adsorption of the common mycotoxins ochratoxin A (OCHRA) and zearalenone (ZEN) by the organokaolinites was investigated at different levels of solid phase in suspension, different initial mycotoxin concentrations and different pH values. The natural kaolin was not effective in binding OCHRA or ZEN. Adsorption of both mycotoxins by organokaolinites increased with increasing amounts of solid phase as well as with increasing levels of surfactant on the kaolin surface. OCHRA and ZEN adsorption by all organokaolinites followed non-linear adsorption isotherms, at pH 3, 7 and 9. The maximum adsorption capacity for OCHRA adsorption was at pH 3 (4.8 mg/g for OKR-25, 26.7 mg/g for OKR-50 and 39.2 mg/g for OKR-90) that was calculated from the Langmuir model. Much lower OCHRA adsorption capacities were found at pH 7 and 9 (from 0.8 mg/g to 6.9 mg/g at pH 7 and from 1.1 mg/g to 4.6 mg/g at pH 9). The following adsorption capacities for ZEN were obtained from the Langmuir isotherms, at pH 3: 4.5 mg/g for OKR-25, 12.0 mg/g for OKR-50 and 13.5 mg/g for OKR-90. At pH 7, adsorption of ZEN was 5.7 mg/g for OKR25, 15.3 mg/g for OKR-90 and 14. 4 mg/g for OKR-90. At pH 9, ZEN adsorption capacities were 2.4, 14.1 and 8.1 mg/g for OKR-25, OKR-50 and OKR-90, respectively. Thus, at the lowest amount of ODMBA at the kaolin surface, adsorption of ZEN was similar at pH 3 and 7, while a slightly lower value was obtained for its adsorption at pH 9. With increasing amounts of organic phase at the kaolin surface, the adsorption of ZEN was practically independent of pH. Adsorption of both mycotoxins was dependent on the amount of ODMBA ions at the kaolin surface as well as on their forms in solution.", publisher = "Elsevier, Amsterdam", journal = "Applied Clay Science", title = "Influence of surface coverage of kaolin with surfactant ions on adsorption of ochratoxin A and zearalenone", volume = "205", doi = "10.1016/j.clay.2021.106040", url = "conv_909" }
Spasojević, M., Daković, A., Rottinghaus, G. E., Obradović, M., Krajišnik, D., Marković, M.,& Krstić, J.. (2021). Influence of surface coverage of kaolin with surfactant ions on adsorption of ochratoxin A and zearalenone. in Applied Clay Science Elsevier, Amsterdam., 205. https://doi.org/10.1016/j.clay.2021.106040 conv_909
Spasojević M, Daković A, Rottinghaus GE, Obradović M, Krajišnik D, Marković M, Krstić J. Influence of surface coverage of kaolin with surfactant ions on adsorption of ochratoxin A and zearalenone. in Applied Clay Science. 2021;205. doi:10.1016/j.clay.2021.106040 conv_909 .
Spasojević, Milica, Daković, Aleksandra, Rottinghaus, George E., Obradović, Milena, Krajišnik, Danina, Marković, Marija, Krstić, Jugoslav, "Influence of surface coverage of kaolin with surfactant ions on adsorption of ochratoxin A and zearalenone" in Applied Clay Science, 205 (2021), https://doi.org/10.1016/j.clay.2021.106040 ., conv_909 .