Assessing the Bioactivity of Gentamicin-Preloaded Hydroxyapatite/Chitosan Composite Coating on Titanium Substrate

2020
Authors
Stevanović, Milena
Đošić, Marija

Janković, Ana

Nesović, Katarina

Kojić, Vesna

Stojanović, Jovica

Grujić, Svetlana

Matić-Bujagić, Ivana

Rhee, Kyong Yop

Mišković-Stanković, Vesna

Article (Published version)
Metadata
Show full item recordAbstract
The electrophoretic deposition process (EPD) was utilized to produce bioactive hydroxyapatite/chitosan (HAP/CS) and hydroxyapatite/chitosan/gentamicin (HAP/CS/Gent) coatings on titanium. The bioactivity of newly synthesized composite coatings was investigated in the simulated body fluid (SBF) and examined by X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The obtained results revealed carbonate-substituted hydroxyapatite after immersion in SBF, emphasizing the similarity of the biomimetically grown HAP with the naturally occurring apatite in the bone. The formation of biomimetic HAP was confirmed by electrochemical impedance spectroscopy and polarization measurements, through the decrease in corrosion current density and coating capacitance values after 28-day immersion in SBF. The osseointegration ability was further validated by measuring the alkaline phosphatase activity (ALP) indicating the favorable osseopromotive proper...ties of deposited coatings (significant increase in ALP levels for both HAP/CS (3.206 U mL(-1)) and HAP/CS/Gent (4.039 U mL(-1)) coatings, compared to the control (0.900 U mL(-1))). Drug-release kinetics was investigated in deionized water at 37 degrees C by high-performance liquid chromatography coupled with mass spectrometry. Release profiles revealed the beneficial "burst-release effect" (similar to 21% of gentamicin released in the first 48 h) as a potentially promising solution against the biofilm formation in the initial period. When tested against human and mice fibroblast cells (MRC-5 and L929), both composite coatings showed a noncytotoxic effect (viability >85%), providing a promising basis for further medical application trials.
Source:
ACS Omega, 2020, 5, 25, 15433-15445Publisher:
- Amer Chemical Soc, Washington
Funding / projects:
- Basic Science Research Program of the Ministry of Education, Science and Technology of Korea [2018R1A2B5A02023190]
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200135 (University of Belgrade, Faculty of Technology and Metallurgy) (RS-200135)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200287 (Innovation Center of the Faculty of Technology and Metallurgy) (RS-200287)
DOI: 10.1021/acsomega.0c01583
ISSN: 2470-1343
PubMed: 32637818
WoS: 000546100300061
Scopus: 2-s2.0-85087796063
Collections
Institution/Community
Institut za tehnologiju nuklearnih i drugih mineralnih sirovinaTY - JOUR AU - Stevanović, Milena AU - Đošić, Marija AU - Janković, Ana AU - Nesović, Katarina AU - Kojić, Vesna AU - Stojanović, Jovica AU - Grujić, Svetlana AU - Matić-Bujagić, Ivana AU - Rhee, Kyong Yop AU - Mišković-Stanković, Vesna PY - 2020 UR - https://ritnms.itnms.ac.rs/handle/123456789/554 AB - The electrophoretic deposition process (EPD) was utilized to produce bioactive hydroxyapatite/chitosan (HAP/CS) and hydroxyapatite/chitosan/gentamicin (HAP/CS/Gent) coatings on titanium. The bioactivity of newly synthesized composite coatings was investigated in the simulated body fluid (SBF) and examined by X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The obtained results revealed carbonate-substituted hydroxyapatite after immersion in SBF, emphasizing the similarity of the biomimetically grown HAP with the naturally occurring apatite in the bone. The formation of biomimetic HAP was confirmed by electrochemical impedance spectroscopy and polarization measurements, through the decrease in corrosion current density and coating capacitance values after 28-day immersion in SBF. The osseointegration ability was further validated by measuring the alkaline phosphatase activity (ALP) indicating the favorable osseopromotive properties of deposited coatings (significant increase in ALP levels for both HAP/CS (3.206 U mL(-1)) and HAP/CS/Gent (4.039 U mL(-1)) coatings, compared to the control (0.900 U mL(-1))). Drug-release kinetics was investigated in deionized water at 37 degrees C by high-performance liquid chromatography coupled with mass spectrometry. Release profiles revealed the beneficial "burst-release effect" (similar to 21% of gentamicin released in the first 48 h) as a potentially promising solution against the biofilm formation in the initial period. When tested against human and mice fibroblast cells (MRC-5 and L929), both composite coatings showed a noncytotoxic effect (viability >85%), providing a promising basis for further medical application trials. PB - Amer Chemical Soc, Washington T2 - ACS Omega T1 - Assessing the Bioactivity of Gentamicin-Preloaded Hydroxyapatite/Chitosan Composite Coating on Titanium Substrate EP - 15445 IS - 25 SP - 15433 VL - 5 DO - 10.1021/acsomega.0c01583 UR - conv_884 ER -
@article{ author = "Stevanović, Milena and Đošić, Marija and Janković, Ana and Nesović, Katarina and Kojić, Vesna and Stojanović, Jovica and Grujić, Svetlana and Matić-Bujagić, Ivana and Rhee, Kyong Yop and Mišković-Stanković, Vesna", year = "2020", abstract = "The electrophoretic deposition process (EPD) was utilized to produce bioactive hydroxyapatite/chitosan (HAP/CS) and hydroxyapatite/chitosan/gentamicin (HAP/CS/Gent) coatings on titanium. The bioactivity of newly synthesized composite coatings was investigated in the simulated body fluid (SBF) and examined by X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The obtained results revealed carbonate-substituted hydroxyapatite after immersion in SBF, emphasizing the similarity of the biomimetically grown HAP with the naturally occurring apatite in the bone. The formation of biomimetic HAP was confirmed by electrochemical impedance spectroscopy and polarization measurements, through the decrease in corrosion current density and coating capacitance values after 28-day immersion in SBF. The osseointegration ability was further validated by measuring the alkaline phosphatase activity (ALP) indicating the favorable osseopromotive properties of deposited coatings (significant increase in ALP levels for both HAP/CS (3.206 U mL(-1)) and HAP/CS/Gent (4.039 U mL(-1)) coatings, compared to the control (0.900 U mL(-1))). Drug-release kinetics was investigated in deionized water at 37 degrees C by high-performance liquid chromatography coupled with mass spectrometry. Release profiles revealed the beneficial "burst-release effect" (similar to 21% of gentamicin released in the first 48 h) as a potentially promising solution against the biofilm formation in the initial period. When tested against human and mice fibroblast cells (MRC-5 and L929), both composite coatings showed a noncytotoxic effect (viability >85%), providing a promising basis for further medical application trials.", publisher = "Amer Chemical Soc, Washington", journal = "ACS Omega", title = "Assessing the Bioactivity of Gentamicin-Preloaded Hydroxyapatite/Chitosan Composite Coating on Titanium Substrate", pages = "15445-15433", number = "25", volume = "5", doi = "10.1021/acsomega.0c01583", url = "conv_884" }
Stevanović, M., Đošić, M., Janković, A., Nesović, K., Kojić, V., Stojanović, J., Grujić, S., Matić-Bujagić, I., Rhee, K. Y.,& Mišković-Stanković, V.. (2020). Assessing the Bioactivity of Gentamicin-Preloaded Hydroxyapatite/Chitosan Composite Coating on Titanium Substrate. in ACS Omega Amer Chemical Soc, Washington., 5(25), 15433-15445. https://doi.org/10.1021/acsomega.0c01583 conv_884
Stevanović M, Đošić M, Janković A, Nesović K, Kojić V, Stojanović J, Grujić S, Matić-Bujagić I, Rhee KY, Mišković-Stanković V. Assessing the Bioactivity of Gentamicin-Preloaded Hydroxyapatite/Chitosan Composite Coating on Titanium Substrate. in ACS Omega. 2020;5(25):15433-15445. doi:10.1021/acsomega.0c01583 conv_884 .
Stevanović, Milena, Đošić, Marija, Janković, Ana, Nesović, Katarina, Kojić, Vesna, Stojanović, Jovica, Grujić, Svetlana, Matić-Bujagić, Ivana, Rhee, Kyong Yop, Mišković-Stanković, Vesna, "Assessing the Bioactivity of Gentamicin-Preloaded Hydroxyapatite/Chitosan Composite Coating on Titanium Substrate" in ACS Omega, 5, no. 25 (2020):15433-15445, https://doi.org/10.1021/acsomega.0c01583 ., conv_884 .