Ecological potential of Epilobium dodonaei Vill. for restoration of metalliferous mine wastes
No Thumbnail
Authors
Ranđelović, Dragana
Gajić, Gordana

Mutić, Jelena

Pavlović, Pavle

Mihailović, Nevena
Jovanović, Slobodan

Article (Published version)

Metadata
Show full item recordAbstract
Metalliferous mine wastes represent one of the major sources of environmental contamination from mining activities. Bor region (Serbia) is one of the largest copper mine basins in Europe where long-term mining caused severe environmental deterioration and created one of the most degraded locations in Serbia and Europe. At the spontaneously colonized metalliferous mine wastes in Bor, plant species Epilobium dodonaei dominates in the mine slopes and mine waste surfaces. Epilobium dodonaei has the status of endangered and protected species in parts of European range (i. e. plant is included in the Red lists of the countries in the Carpathian mountains region), primarily due to losses of natural gravel habitats. The main focus of this research was physico-chemical characterization of mine waste, assessment of phytoremediation potential and plant metabolic stress response of Epilobium dodonaei at the hot spot metalliferous mine site in order to evaluate the possibility for application of en...dangered species in ecological restoration. The Bor mine wastes are characterized by coarse soil texture, various pH (4.58-8.30), and elevated concentrations of arsenic (44.5-271 mg kg(-1)) and copper (311-2820 mg kg(-1)) that exceed the Serbian limiting threshold and remediation values. Oxidation of metal-sulfide minerals on waste surface leads to increased acidity, followed by elevated metal mobility of the mine spoil solution. Content of arsenic, copper, lead and zinc in roots of E. dodonaei was correlated with pseudo-total and EDTA-available concentrations in Bor mine spoils. Furthermore, the content of arsenic, copper, lead and zinc in roots (3.98 mg kg(-1), 140 mg kg(-1), 3.19 mg kg(-1), and 72.8 mg kg(-1), respectively) and shoots (4.69 mg kg(-1),57.7 mg kg(-1), 1.17 mg kg(-1), and 59.3 mg kg(-1), respectively) of E. dodonaei reflected the multi-metal pollution at the investigated site. Epilobium dodonaei largely retains copper, lead and zinc in roots than in shoots and has the potential for phytoremediation of mine wastes. Epilobium dodonaei at Bor mine spoil had a high content of malondialdehyde in roots and leaves as well as reduced chlorophylls and carotenoids content in leaves, indicating great oxidative stress. However, elevated arsenic and copper content could promote biosynthesis of antioxidants in roots and leaves of E. dodonaei at mine spoil. Creation of an endangered species habitat on mine waste rocks of the Bor mining area and similar sites of Carpatho-Balkan metallogenic province could successfully contribute to the preservation of E. dodonaei. Development of practical procedures for the selection and application of endangered plant species in reclamation should create stronger link between ecological restoration and conservation biology. Finally, the application of endangered plant species should take a more prominent role in the restoration process and ecosystem design.
Keywords:
Phytoremediation / Mine waste / Metabolic response / Epilobium dodonaei / Ecological restoration / Conservation biologySource:
Ecological Engineering, 2016, 95, 800-810Publisher:
- Elsevier, Amsterdam
Funding / projects:
- Magmatism and geodynamics of the Balkan Peninsula from Mesozoic to present day: significance for the formation of metallic and non-metallic mineral deposits (RS-176016)
- Plant Biodiversity of Serbia and the Balkans - assesment, sustainable use and protection (RS-173030)
- Ecophysiological adaptive strategies of plants in conditions of multiple stress (RS-173018)
- Application of advanced oxidation processes and nanostructured oxide materials for the removal of pollutants from the environment, development and optimisation of instrumental techniques for efficiency monitoring (RS-172030)
Collections
Institution/Community
Institut za tehnologiju nuklearnih i drugih mineralnih sirovinaTY - JOUR AU - Ranđelović, Dragana AU - Gajić, Gordana AU - Mutić, Jelena AU - Pavlović, Pavle AU - Mihailović, Nevena AU - Jovanović, Slobodan PY - 2016 UR - https://ritnms.itnms.ac.rs/handle/123456789/402 AB - Metalliferous mine wastes represent one of the major sources of environmental contamination from mining activities. Bor region (Serbia) is one of the largest copper mine basins in Europe where long-term mining caused severe environmental deterioration and created one of the most degraded locations in Serbia and Europe. At the spontaneously colonized metalliferous mine wastes in Bor, plant species Epilobium dodonaei dominates in the mine slopes and mine waste surfaces. Epilobium dodonaei has the status of endangered and protected species in parts of European range (i. e. plant is included in the Red lists of the countries in the Carpathian mountains region), primarily due to losses of natural gravel habitats. The main focus of this research was physico-chemical characterization of mine waste, assessment of phytoremediation potential and plant metabolic stress response of Epilobium dodonaei at the hot spot metalliferous mine site in order to evaluate the possibility for application of endangered species in ecological restoration. The Bor mine wastes are characterized by coarse soil texture, various pH (4.58-8.30), and elevated concentrations of arsenic (44.5-271 mg kg(-1)) and copper (311-2820 mg kg(-1)) that exceed the Serbian limiting threshold and remediation values. Oxidation of metal-sulfide minerals on waste surface leads to increased acidity, followed by elevated metal mobility of the mine spoil solution. Content of arsenic, copper, lead and zinc in roots of E. dodonaei was correlated with pseudo-total and EDTA-available concentrations in Bor mine spoils. Furthermore, the content of arsenic, copper, lead and zinc in roots (3.98 mg kg(-1), 140 mg kg(-1), 3.19 mg kg(-1), and 72.8 mg kg(-1), respectively) and shoots (4.69 mg kg(-1),57.7 mg kg(-1), 1.17 mg kg(-1), and 59.3 mg kg(-1), respectively) of E. dodonaei reflected the multi-metal pollution at the investigated site. Epilobium dodonaei largely retains copper, lead and zinc in roots than in shoots and has the potential for phytoremediation of mine wastes. Epilobium dodonaei at Bor mine spoil had a high content of malondialdehyde in roots and leaves as well as reduced chlorophylls and carotenoids content in leaves, indicating great oxidative stress. However, elevated arsenic and copper content could promote biosynthesis of antioxidants in roots and leaves of E. dodonaei at mine spoil. Creation of an endangered species habitat on mine waste rocks of the Bor mining area and similar sites of Carpatho-Balkan metallogenic province could successfully contribute to the preservation of E. dodonaei. Development of practical procedures for the selection and application of endangered plant species in reclamation should create stronger link between ecological restoration and conservation biology. Finally, the application of endangered plant species should take a more prominent role in the restoration process and ecosystem design. PB - Elsevier, Amsterdam T2 - Ecological Engineering T1 - Ecological potential of Epilobium dodonaei Vill. for restoration of metalliferous mine wastes EP - 810 SP - 800 VL - 95 DO - 10.1016/j.ecoleng.2016.07.015 UR - conv_774 ER -
@article{ author = "Ranđelović, Dragana and Gajić, Gordana and Mutić, Jelena and Pavlović, Pavle and Mihailović, Nevena and Jovanović, Slobodan", year = "2016", abstract = "Metalliferous mine wastes represent one of the major sources of environmental contamination from mining activities. Bor region (Serbia) is one of the largest copper mine basins in Europe where long-term mining caused severe environmental deterioration and created one of the most degraded locations in Serbia and Europe. At the spontaneously colonized metalliferous mine wastes in Bor, plant species Epilobium dodonaei dominates in the mine slopes and mine waste surfaces. Epilobium dodonaei has the status of endangered and protected species in parts of European range (i. e. plant is included in the Red lists of the countries in the Carpathian mountains region), primarily due to losses of natural gravel habitats. The main focus of this research was physico-chemical characterization of mine waste, assessment of phytoremediation potential and plant metabolic stress response of Epilobium dodonaei at the hot spot metalliferous mine site in order to evaluate the possibility for application of endangered species in ecological restoration. The Bor mine wastes are characterized by coarse soil texture, various pH (4.58-8.30), and elevated concentrations of arsenic (44.5-271 mg kg(-1)) and copper (311-2820 mg kg(-1)) that exceed the Serbian limiting threshold and remediation values. Oxidation of metal-sulfide minerals on waste surface leads to increased acidity, followed by elevated metal mobility of the mine spoil solution. Content of arsenic, copper, lead and zinc in roots of E. dodonaei was correlated with pseudo-total and EDTA-available concentrations in Bor mine spoils. Furthermore, the content of arsenic, copper, lead and zinc in roots (3.98 mg kg(-1), 140 mg kg(-1), 3.19 mg kg(-1), and 72.8 mg kg(-1), respectively) and shoots (4.69 mg kg(-1),57.7 mg kg(-1), 1.17 mg kg(-1), and 59.3 mg kg(-1), respectively) of E. dodonaei reflected the multi-metal pollution at the investigated site. Epilobium dodonaei largely retains copper, lead and zinc in roots than in shoots and has the potential for phytoremediation of mine wastes. Epilobium dodonaei at Bor mine spoil had a high content of malondialdehyde in roots and leaves as well as reduced chlorophylls and carotenoids content in leaves, indicating great oxidative stress. However, elevated arsenic and copper content could promote biosynthesis of antioxidants in roots and leaves of E. dodonaei at mine spoil. Creation of an endangered species habitat on mine waste rocks of the Bor mining area and similar sites of Carpatho-Balkan metallogenic province could successfully contribute to the preservation of E. dodonaei. Development of practical procedures for the selection and application of endangered plant species in reclamation should create stronger link between ecological restoration and conservation biology. Finally, the application of endangered plant species should take a more prominent role in the restoration process and ecosystem design.", publisher = "Elsevier, Amsterdam", journal = "Ecological Engineering", title = "Ecological potential of Epilobium dodonaei Vill. for restoration of metalliferous mine wastes", pages = "810-800", volume = "95", doi = "10.1016/j.ecoleng.2016.07.015", url = "conv_774" }
Ranđelović, D., Gajić, G., Mutić, J., Pavlović, P., Mihailović, N.,& Jovanović, S.. (2016). Ecological potential of Epilobium dodonaei Vill. for restoration of metalliferous mine wastes. in Ecological Engineering Elsevier, Amsterdam., 95, 800-810. https://doi.org/10.1016/j.ecoleng.2016.07.015 conv_774
Ranđelović D, Gajić G, Mutić J, Pavlović P, Mihailović N, Jovanović S. Ecological potential of Epilobium dodonaei Vill. for restoration of metalliferous mine wastes. in Ecological Engineering. 2016;95:800-810. doi:10.1016/j.ecoleng.2016.07.015 conv_774 .
Ranđelović, Dragana, Gajić, Gordana, Mutić, Jelena, Pavlović, Pavle, Mihailović, Nevena, Jovanović, Slobodan, "Ecological potential of Epilobium dodonaei Vill. for restoration of metalliferous mine wastes" in Ecological Engineering, 95 (2016):800-810, https://doi.org/10.1016/j.ecoleng.2016.07.015 ., conv_774 .