Primena ANN modela na proces uklanjanja bakra iz vodenih rastvora upotrebom agro-industrijskog otpada
Usefulness of ANN-based model for copper removal from aqueous solutions using agro industrial waste materials

2015
Authors
Petrović, Marija
Šoštarić, Tatjana

Pezo, Lato

Stanković, Slavka
Lačnjevac, Časlav

Milojković, Jelena

Stojanović, Mirjana

Article (Published version)
Metadata
Show full item recordAbstract
U radu je ispitana mogućnost upotrebe lokalno dostupnih lignoceluloznih materijala kao potencijalnih biosorbenata u svrhu uklanjanja jona bakra iz vodenih rastvora. Ispitivani materijali predstavljaju čvrst otpad koji nastaje nakon prerade kukuruza (oklasak kukuruza) i nakon prerade voća (koštice kajsije). Ovakav otpad ima malu ekonomsku vrednost a njegovo odlaganje predstavlja ekološki problem. U šaržnom sistemu ispitani su uticaj inicijalne koncentracije Cu(II) jona (Ci), količine biomase (m) i zapremine rastvora (V) na efikasnost biosorpcije i vrednost biosorpcionog kapaciteta. Utvrđeni su optimalni procesni parametri. Eksperimentalni rezultati su poređeni sa dva modela: SOP (second order polynomial regression models) i ANN (artificial neural networks), pri čemu je SOP model pokazao prihvatljiv determinacioni koefijent (0,842-0,997), dok je ANN pokazao visoku tačnost prognoze (0,980-0,986) u odnosu na eksperimentalne rezultate.
The purpose of this study was to investigate the adsorption properties of locally available lignocellulose biomaterials as biosorbents for the removal of copper ions from aqueous solution. Materials are generated from juice production (apricot stones) and from the corn milling process (corn cob). Such solid wastes have little or no economic value and very often present a disposal problem. Using batch adsorption techniques the effects of initial Cu(II) ions concentration (Ci), amount of biomass (m) and volume of metal solution (V) on biosorption efficiency and capacity were studied for both materials, without any pre-treatments. The optimal parameters for both biosorbents were selected depending on the highest sorption capability of biosorbent in removal of Cu(II). Experimental data were compared with second order polynomial regression models (SOPs) and artificial neural networks (ANNs). SOPs showed acceptable coefficients of determination (0.842-0.997), while ANNs performed with high p...rediction accuracy (0.980-0.986) in comparison to experimental results.
Keywords:
SOP / oklasak kukuruza / koštice kajsije / joni bakra / biosorpcija / ANN / SOPs / corn cob / copper ions / biosorption / apricot stones / ANNSource:
Chemical Industry and Chemical Engineering Quarterly / CICEQ, 2015, 21, 2, 249-259Publisher:
- Savez hemijskih inženjera, Beograd
Funding / projects:
- Development of technologies and products based on mineral raw materials and waste biomass for protection of natural resources for safe food production (RS-31003)
- Osmotic dehydration of food - energy and ecological aspects of sustainable production (RS-31055)
DOI: 10.2298/CICEQ140510023P
ISSN: 1451-9372
WoS: 000364475500003
Scopus: 2-s2.0-84931049032
Collections
Institution/Community
Institut za tehnologiju nuklearnih i drugih mineralnih sirovinaTY - JOUR AU - Petrović, Marija AU - Šoštarić, Tatjana AU - Pezo, Lato AU - Stanković, Slavka AU - Lačnjevac, Časlav AU - Milojković, Jelena AU - Stojanović, Mirjana PY - 2015 UR - https://ritnms.itnms.ac.rs/handle/123456789/371 AB - U radu je ispitana mogućnost upotrebe lokalno dostupnih lignoceluloznih materijala kao potencijalnih biosorbenata u svrhu uklanjanja jona bakra iz vodenih rastvora. Ispitivani materijali predstavljaju čvrst otpad koji nastaje nakon prerade kukuruza (oklasak kukuruza) i nakon prerade voća (koštice kajsije). Ovakav otpad ima malu ekonomsku vrednost a njegovo odlaganje predstavlja ekološki problem. U šaržnom sistemu ispitani su uticaj inicijalne koncentracije Cu(II) jona (Ci), količine biomase (m) i zapremine rastvora (V) na efikasnost biosorpcije i vrednost biosorpcionog kapaciteta. Utvrđeni su optimalni procesni parametri. Eksperimentalni rezultati su poređeni sa dva modela: SOP (second order polynomial regression models) i ANN (artificial neural networks), pri čemu je SOP model pokazao prihvatljiv determinacioni koefijent (0,842-0,997), dok je ANN pokazao visoku tačnost prognoze (0,980-0,986) u odnosu na eksperimentalne rezultate. AB - The purpose of this study was to investigate the adsorption properties of locally available lignocellulose biomaterials as biosorbents for the removal of copper ions from aqueous solution. Materials are generated from juice production (apricot stones) and from the corn milling process (corn cob). Such solid wastes have little or no economic value and very often present a disposal problem. Using batch adsorption techniques the effects of initial Cu(II) ions concentration (Ci), amount of biomass (m) and volume of metal solution (V) on biosorption efficiency and capacity were studied for both materials, without any pre-treatments. The optimal parameters for both biosorbents were selected depending on the highest sorption capability of biosorbent in removal of Cu(II). Experimental data were compared with second order polynomial regression models (SOPs) and artificial neural networks (ANNs). SOPs showed acceptable coefficients of determination (0.842-0.997), while ANNs performed with high prediction accuracy (0.980-0.986) in comparison to experimental results. PB - Savez hemijskih inženjera, Beograd T2 - Chemical Industry and Chemical Engineering Quarterly / CICEQ T1 - Primena ANN modela na proces uklanjanja bakra iz vodenih rastvora upotrebom agro-industrijskog otpada T1 - Usefulness of ANN-based model for copper removal from aqueous solutions using agro industrial waste materials EP - 259 IS - 2 SP - 249 VL - 21 DO - 10.2298/CICEQ140510023P UR - conv_392 ER -
@article{ author = "Petrović, Marija and Šoštarić, Tatjana and Pezo, Lato and Stanković, Slavka and Lačnjevac, Časlav and Milojković, Jelena and Stojanović, Mirjana", year = "2015", abstract = "U radu je ispitana mogućnost upotrebe lokalno dostupnih lignoceluloznih materijala kao potencijalnih biosorbenata u svrhu uklanjanja jona bakra iz vodenih rastvora. Ispitivani materijali predstavljaju čvrst otpad koji nastaje nakon prerade kukuruza (oklasak kukuruza) i nakon prerade voća (koštice kajsije). Ovakav otpad ima malu ekonomsku vrednost a njegovo odlaganje predstavlja ekološki problem. U šaržnom sistemu ispitani su uticaj inicijalne koncentracije Cu(II) jona (Ci), količine biomase (m) i zapremine rastvora (V) na efikasnost biosorpcije i vrednost biosorpcionog kapaciteta. Utvrđeni su optimalni procesni parametri. Eksperimentalni rezultati su poređeni sa dva modela: SOP (second order polynomial regression models) i ANN (artificial neural networks), pri čemu je SOP model pokazao prihvatljiv determinacioni koefijent (0,842-0,997), dok je ANN pokazao visoku tačnost prognoze (0,980-0,986) u odnosu na eksperimentalne rezultate., The purpose of this study was to investigate the adsorption properties of locally available lignocellulose biomaterials as biosorbents for the removal of copper ions from aqueous solution. Materials are generated from juice production (apricot stones) and from the corn milling process (corn cob). Such solid wastes have little or no economic value and very often present a disposal problem. Using batch adsorption techniques the effects of initial Cu(II) ions concentration (Ci), amount of biomass (m) and volume of metal solution (V) on biosorption efficiency and capacity were studied for both materials, without any pre-treatments. The optimal parameters for both biosorbents were selected depending on the highest sorption capability of biosorbent in removal of Cu(II). Experimental data were compared with second order polynomial regression models (SOPs) and artificial neural networks (ANNs). SOPs showed acceptable coefficients of determination (0.842-0.997), while ANNs performed with high prediction accuracy (0.980-0.986) in comparison to experimental results.", publisher = "Savez hemijskih inženjera, Beograd", journal = "Chemical Industry and Chemical Engineering Quarterly / CICEQ", title = "Primena ANN modela na proces uklanjanja bakra iz vodenih rastvora upotrebom agro-industrijskog otpada, Usefulness of ANN-based model for copper removal from aqueous solutions using agro industrial waste materials", pages = "259-249", number = "2", volume = "21", doi = "10.2298/CICEQ140510023P", url = "conv_392" }
Petrović, M., Šoštarić, T., Pezo, L., Stanković, S., Lačnjevac, Č., Milojković, J.,& Stojanović, M.. (2015). Primena ANN modela na proces uklanjanja bakra iz vodenih rastvora upotrebom agro-industrijskog otpada. in Chemical Industry and Chemical Engineering Quarterly / CICEQ Savez hemijskih inženjera, Beograd., 21(2), 249-259. https://doi.org/10.2298/CICEQ140510023P conv_392
Petrović M, Šoštarić T, Pezo L, Stanković S, Lačnjevac Č, Milojković J, Stojanović M. Primena ANN modela na proces uklanjanja bakra iz vodenih rastvora upotrebom agro-industrijskog otpada. in Chemical Industry and Chemical Engineering Quarterly / CICEQ. 2015;21(2):249-259. doi:10.2298/CICEQ140510023P conv_392 .
Petrović, Marija, Šoštarić, Tatjana, Pezo, Lato, Stanković, Slavka, Lačnjevac, Časlav, Milojković, Jelena, Stojanović, Mirjana, "Primena ANN modela na proces uklanjanja bakra iz vodenih rastvora upotrebom agro-industrijskog otpada" in Chemical Industry and Chemical Engineering Quarterly / CICEQ, 21, no. 2 (2015):249-259, https://doi.org/10.2298/CICEQ140510023P ., conv_392 .