Concentration and mobility of trace elements (Li, Ba, Sr, Ag, Hg, B) and macronutrients (Ca, Mg, K) in soil-orchid system on different bedrock types
Authorized Users Only
2023
Authors
Mikavica, Ivana
Ranđelović, Dragana

Đorđević, Vladan

Rakić, Tamara
Gajić, Gordana
Mutić, Jelena

Article (Published version)

Metadata
Show full item recordAbstract
The mobility of chemical elements in the soil-orchid system has been poorly studied. The aim of this study is to evaluate the uptake and mobility of several trace (Li, Ba, Sr, Ag, Hg, and B) and macronutrients (Ca, Mg, and K) in the orchid Anacamptis morio (L.) R.M.Bateman, Pridgeon & M.W.Chase from soils in western Serbia. The sampling sites are characterized by three different bedrock types-cherts, limestones, and serpentines, which are the source of the significant chemical differences in the elemental status of the soil and plant tissues. The four-step Community Bureau of Reference sequential extraction procedure was used to determine the distribution of fractions and predict their potential phytoavailability. The orchid and soil samples were analyzed for total elemental content analysis using ICP-OES. The greatest potential for plant availability was determined for Ba and Sr, representing about 80% of the total soil content. More than 40% of Li in the soils was found to be potenti...ally phytoavailable. Significant correlations were found between the total content of Li, B, and Sr in soils. Between 38 and 60% of Li content and more than 80% of Ba and Sr content were determined to be potentially phytoavailable by sequential analysis. The highest bioconcentration factor (> 1) was determined in the case of B and Sr for all orchid organs, while translocation factor for Li was highest in tubers and leaves. The studied elements were mainly stored in tubers and roots, indicating the exclusion strategy of A. morio as a metal tolerance mechanism. The data obtained showed significant differences in metal content in soils and plants originating from sites with different parent materials, suggesting that bedrock type and associated soil properties are important factors that determine chemical element mobility and uptake.
Keywords:
Translocation / Sequential extraction / Phytoavailability / Parent rock / Bioconcentration / Anacamptis morioSource:
Environmental science and pollution research, 2023Publisher:
- Springer Heidelberg, Heidelberg
Funding / projects:
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200178 (University of Belgrade, Faculty of Biology) (RS-200178)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200023 (Institute of Technology of Nuclear and Other Mineral Row Materials - ITNMS, Belgrade) (RS-200023)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200007 (University of Belgrade, Institute for Biological Research 'Siniša Stanković') (RS-200007)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200168 (University of Belgrade, Faculty of Chemistry) (RS-200168)
DOI: 10.1007/s11356-022-22110-z
ISSN: 0944-1344
PubMed: 35907069
WoS: 000833459900011
Scopus: 2-s2.0-85135235308
Collections
Institution/Community
Institut za tehnologiju nuklearnih i drugih mineralnih sirovinaTY - JOUR AU - Mikavica, Ivana AU - Ranđelović, Dragana AU - Đorđević, Vladan AU - Rakić, Tamara AU - Gajić, Gordana AU - Mutić, Jelena PY - 2023 UR - https://ritnms.itnms.ac.rs/handle/123456789/23 AB - The mobility of chemical elements in the soil-orchid system has been poorly studied. The aim of this study is to evaluate the uptake and mobility of several trace (Li, Ba, Sr, Ag, Hg, and B) and macronutrients (Ca, Mg, and K) in the orchid Anacamptis morio (L.) R.M.Bateman, Pridgeon & M.W.Chase from soils in western Serbia. The sampling sites are characterized by three different bedrock types-cherts, limestones, and serpentines, which are the source of the significant chemical differences in the elemental status of the soil and plant tissues. The four-step Community Bureau of Reference sequential extraction procedure was used to determine the distribution of fractions and predict their potential phytoavailability. The orchid and soil samples were analyzed for total elemental content analysis using ICP-OES. The greatest potential for plant availability was determined for Ba and Sr, representing about 80% of the total soil content. More than 40% of Li in the soils was found to be potentially phytoavailable. Significant correlations were found between the total content of Li, B, and Sr in soils. Between 38 and 60% of Li content and more than 80% of Ba and Sr content were determined to be potentially phytoavailable by sequential analysis. The highest bioconcentration factor (> 1) was determined in the case of B and Sr for all orchid organs, while translocation factor for Li was highest in tubers and leaves. The studied elements were mainly stored in tubers and roots, indicating the exclusion strategy of A. morio as a metal tolerance mechanism. The data obtained showed significant differences in metal content in soils and plants originating from sites with different parent materials, suggesting that bedrock type and associated soil properties are important factors that determine chemical element mobility and uptake. PB - Springer Heidelberg, Heidelberg T2 - Environmental science and pollution research T1 - Concentration and mobility of trace elements (Li, Ba, Sr, Ag, Hg, B) and macronutrients (Ca, Mg, K) in soil-orchid system on different bedrock types EP - DO - 10.1007/s11356-022-22110-z UR - conv_949 ER -
@article{ author = "Mikavica, Ivana and Ranđelović, Dragana and Đorđević, Vladan and Rakić, Tamara and Gajić, Gordana and Mutić, Jelena", year = "2023", abstract = "The mobility of chemical elements in the soil-orchid system has been poorly studied. The aim of this study is to evaluate the uptake and mobility of several trace (Li, Ba, Sr, Ag, Hg, and B) and macronutrients (Ca, Mg, and K) in the orchid Anacamptis morio (L.) R.M.Bateman, Pridgeon & M.W.Chase from soils in western Serbia. The sampling sites are characterized by three different bedrock types-cherts, limestones, and serpentines, which are the source of the significant chemical differences in the elemental status of the soil and plant tissues. The four-step Community Bureau of Reference sequential extraction procedure was used to determine the distribution of fractions and predict their potential phytoavailability. The orchid and soil samples were analyzed for total elemental content analysis using ICP-OES. The greatest potential for plant availability was determined for Ba and Sr, representing about 80% of the total soil content. More than 40% of Li in the soils was found to be potentially phytoavailable. Significant correlations were found between the total content of Li, B, and Sr in soils. Between 38 and 60% of Li content and more than 80% of Ba and Sr content were determined to be potentially phytoavailable by sequential analysis. The highest bioconcentration factor (> 1) was determined in the case of B and Sr for all orchid organs, while translocation factor for Li was highest in tubers and leaves. The studied elements were mainly stored in tubers and roots, indicating the exclusion strategy of A. morio as a metal tolerance mechanism. The data obtained showed significant differences in metal content in soils and plants originating from sites with different parent materials, suggesting that bedrock type and associated soil properties are important factors that determine chemical element mobility and uptake.", publisher = "Springer Heidelberg, Heidelberg", journal = "Environmental science and pollution research", title = "Concentration and mobility of trace elements (Li, Ba, Sr, Ag, Hg, B) and macronutrients (Ca, Mg, K) in soil-orchid system on different bedrock types", pages = "", doi = "10.1007/s11356-022-22110-z", url = "conv_949" }
Mikavica, I., Ranđelović, D., Đorđević, V., Rakić, T., Gajić, G.,& Mutić, J.. (2023). Concentration and mobility of trace elements (Li, Ba, Sr, Ag, Hg, B) and macronutrients (Ca, Mg, K) in soil-orchid system on different bedrock types. in Environmental science and pollution research Springer Heidelberg, Heidelberg.. https://doi.org/10.1007/s11356-022-22110-z conv_949
Mikavica I, Ranđelović D, Đorđević V, Rakić T, Gajić G, Mutić J. Concentration and mobility of trace elements (Li, Ba, Sr, Ag, Hg, B) and macronutrients (Ca, Mg, K) in soil-orchid system on different bedrock types. in Environmental science and pollution research. 2023;:null-. doi:10.1007/s11356-022-22110-z conv_949 .
Mikavica, Ivana, Ranđelović, Dragana, Đorđević, Vladan, Rakić, Tamara, Gajić, Gordana, Mutić, Jelena, "Concentration and mobility of trace elements (Li, Ba, Sr, Ag, Hg, B) and macronutrients (Ca, Mg, K) in soil-orchid system on different bedrock types" in Environmental science and pollution research (2023), https://doi.org/10.1007/s11356-022-22110-z ., conv_949 .