UNIVERZITET U BANJOJ LUCI TEHNOLOŠKI FAKULTET BANJA LUKA

ZBORNIK RADOVA

sa

1. naučno-stručne konferencije "Kongres studenata tehnoloških fakulteta"

Banja Luka, 11-13. oktobar 2018. godine

ZBORNIK RADOVA

sa

1. naučno-stručne konferencije "Kongres studenata tehnoloških fakulteta"

Banja Luka, 11-13. oktobar 2018. godine

ORGANIZACIONI ODBOR

Vladimir Mlinarević - predsjednik organizacionog odbora Natalija Učur - grafički dizajn i vizuelni identitet

NAUČNI ODBOR

doc. dr Borislav Malinović prof. dr Tatjana Botić prof. dr Slavica Grujić doc. dr Mladen Stančić prof. dr Dragana Grujić doc. dr Goran Vučić doc. dr Ladislav Vasilišin

SARADNICI NA PROJEKTU - studenti Marko Koprena, Vanja Mišić, Tamara Ostović, Daniela Marjanović, Branka Milivojac, Isidora Dragoljić, Sanja Jevtić, Jovanka Laketić, Jovana Dragoljić, Miloš Vujić, Stefan Vranješ

Izdavač: Tehnološki fakultet Banja Luka, Univerzitet u Banjoj Luci Urednik: dr. Borislav Malinović, dekan Tehnička priprema: dr Goran Vučić Tiraž: elektronsko izdanje (https://ks.tf.unibl.org/)

ISPITIVANJE KINETIKE I TERMODINAMIKE ADSORPCIJE JONA Zn²⁺ NA GRANULISANOM AKTIVNOM UGLJU

Aleksandar Jovanović¹*, Maja Đolić², Maja Stevanović³, Zlate Veličković⁴, Aleksandar Marinković¹

¹Tehnološko-metalurški fakultet, Univerzitet u Beogradu, Srbija ²Institut za nuklearne nauke Vinča, Univerzitet u Beogradu, Srbija ³Inovacioni centar, Tehnološko-metalurški fakultet, Univerzitet u Beogradu, Srbija ⁴Vojna akademija, Univerzitet odbrane, Beograd, Srbija e-mail:aleksandarjovanovic.tmf@gmail.com

ABSTRAKT

Granulisani aktivni ugalj (eng. granulated activated carbon, GAC), komercijalni naziv Karbozjak, proizveden u preduzeću "Miloje Zakić" u Kruševcu. ispitan je kao adsorbent za uklanjanje jona Zn^{2+} . Fizičkohemijskim analizama utvrđeno je da je ugljenik osnovna komponenta -63,3 %, BET specifična površina 1436 m² g⁻¹ i raspodela veličine čestica u opsegu od 0,355-1,60 mm. Uzorak je homogenizovan pomoću avana i tučka, ispran dejonizovanom vodom, sušen 2 h na 105 °C, a zatim kondicioniran u eksikatoru. Ispitan je uticaj mase adsorbenta, temperature i kontaktnog vremena na sorpcioni kapacitet, kinetiku i termodinamiku procesa. Sorpcioni kapacitet GAC/Zn^{2+} od 47,3 mg g⁻¹ na 45 °C, izračunat preko Lengmirovog (Langmuir) modela, ukazao je da je ovaj ugljenični materijal visoko efikasan adsorbent. Najbolje slaganje kinetičkih parametara sa Veber- Morisovim (Weber-Morris) modelom ukazalo je da je unutarčestična difuzija određujući stepen adsorpcije jona Zn²⁺. Adsorpciona svojstva materijala potvrđena su strukturnom i površinskom karakterizacijom primenom skenirajuće elektronske mikroskopije (SEM) i rendgenske difrakcione analize (XRD). U skladu sa konceptom ponovne upotrebe materijala i bioodrživosti, iskorišćeni GAC/Zn²⁺ adsorbent mogao bi se dalie primeniti kao antimikrobni nosač (višenamenski materijal).

Ključne reči: adsorpcija, granulisani aktivni ugalj, jon Zn²⁺, Lengmirov model

UVOD

U konvencionalnim, kao i naprednim postupcima prečišćavanja otpadnih voda (eng. Advanced Wastewater Treatment), koriste se višenamenski

materijali za istovremeno uklanjanje različitih tipova zagađujućih materija. U praksi su sve više zastupljeni prirodni, modifikovani, ili sintetisani adsorbent-katalizatori, ili adsorbent-antimikrobni nosači, kako bi se podigao stepen univerzalne efikasnosti [Stojaković et al. 2011]. Aktivni ugalj je najviše korišćeni materijal u procesima sekundarnog i tercijalnog prečišćavanja otpadnih voda, prvenstveno zbog velike specifične površine i sposobnost neselektivnog uklanjanja velikog broja zagađujućih supstanci. Ciliano uklanjanje toksičnih metala, organskih jedinjenja, kao i mikroorganizama, moguće je korišćenjem aktivnog uglja uz prethodnu modifikaciju površine sopcionog materijala. Joni metala, kao što su: Ag⁺, Cu^{2+} , Zn^{2+} , Sn^{2+} , Pb^{2+} , Ti^{2+} i Cd^{2+} , poznati su kao dobri antimikrobni agensi. Uklanjanje jona Zn^{2+} na aktivnom uglju, pored prečišćavanja vodenog medijuma, predstavlja istovremeno i proces impregnacije (aktivacije površine) u cilju daljeg antimikrobnog dejstva materijala [Đolić et al. 2015]. U ovom radu detaljno je ispitan mehanizam adsorpcije jona Zn^{2+} (kinetika i termodinamika procesa) na granulisanom aktivnom uglju, kao promena strukturnih i površinskih svojstava materijala.

MATERIJAL I METODE RADA

Za eksperimente obuhvaćene ovim istraživanjem korišćen je granulisani aktivni ugalj (*eng.* granulated activated carbon, GAC), komercijalni naziv Karbozjak, proizveden u preduzeću "Miloje Zakić" u Kruševcu (slika 1). Fizičkohemijskim analizama utvrđeno je da je ugljenik osnovna komponenta – 63,3 %, BET specifična površina 1436 m² g⁻¹ i raspodela veličine čestica u opsegu od 0,355–1,60 mm [Milenković et al. 2004]. Uzorak je homogenizovan pomoću avana i tučka, ispran dejonizovanom MiliQ vodom (otpornosti 18 M Ω cm), sušen 2 h na 105 °C a zatim kondicioniran u eksikatoru.

Početni aktivacioni rastvori Zn^{2+} jona, dobijen je rastvaranjem 1,0 g analitički čiste soli $ZnSO_4 \cdot 7H_2O$ (proizvođač Merk, Darmstad, Nemačka) u 1 L MiliQ vode (standardni rastvor Zn^{2+} - jona koncentracije 362 mg L⁻¹). Serija adsorpcionih eksperimenata izvršena je prema sledećoj proceduri: 1,0 g čvrstog uzorka je dodato u 100 mL standardnog rastvora metala [Đolić et al., 2015]. Uspostavljeno je mešanje od 170 obrtaja min⁻¹ na orbitalnom šejkeru, na sobnoj temperaturi od 21±1 °C, u vremenskom intervalu od 3 min do 24 h. Alikvoti od 1 mL su uzorkovani na 3, 5, 10, 15 i 30 min od početka procesa, kao i nakon 1, 2, 3, 4, 5, 6, 8, 12 i 24 h. Sorbenti i rastvori su dalje razdvojeni filtracijom preko standardnog laboratorijskog filter papira promera 0.45 µm. Nakon razdvajanja faza, sorbenti su bili izloženi na ambijentalnom vazduhu tokom 24 h, a zatim sušeni 2 h na 105 °C.

Koncentracija metala u sakupljenim alikvotima i filtratima određena je korišćenjem ICP-OES tehnike.

Slika 1. Izgled ispitivanog adsorbenta

Metode karakterizacije

Strukturna i fazna analiza adsorpcionog materijala izvršena je merenjem difrakcije X zraka na *ENRAF NONIUS FR590* XRD instrumentu sa *Vario* 1 monohromatorom (Cuka1 radijacija, λ =1,54059 Å). Difraktogram prirodnih uzoraka poređen je sa standardima uzoraka u obliku praha (PDF2), gde su korišćene referentne kartice za: aktivni ugalj (89-7213). Morfološka svojstva prirodnog i Zn²⁺-modifikovanog sorbenta ispitana su primenom skenirajuće elektronske mikroskopije emisijom elektrona-primenom polja (FE-SEM) na *TESCAN MIRA3* elektronskom mikroskopu.

Adsorpcioni kapacitet

Adsorpcioni kapacitet adsorbenta, tj. masa teškog metala koja je adsorbovana po jedinici mase uzorka, izračunava se prema sledećoj jednačini:

$$q_e = \frac{C_0 - C_e}{m} \times V$$

(1)

gde je: q_e – masa teškog metala adsorbovana po jednici mase adsorbenta (mg g-¹);

 C_0 i C_e – masene koncentracije teškog metala na početku i na kraju eksperimenta (mg L-¹);

V – zapremina rastvora (L) i m – masa adsorbenta (g).

Adsorpcione izoterme

Adsorpcione izoterme opisuju interakcije između adsorbenta i adsorbata u ispitivanom sistemu u stanju ravnoteže, kao i uslove pri kojima se ostvaruje najveći adsorpcioni kapacitet. Postoje različiti ravnotežni modeli za opisivanje procesa adsorpcije [Karanac, 2018], a u ovom radu korišćeni su: Lengmir-ov (eng. *Langumir*), Frojndlih-ov (eng. *Freundlich*), Temkin-ov (eng. *Temkin*) i Dubinin–Raduškevič-ev (eng. *Dubinin–Radushkevich*) model, (tabela 1) [Foo and Hammed, 2010; Tran et al., 2017].

Model izoterme	Nelinearan oblik	Linearan oblik	Jednači na
Lengmir	$q_{s} = \frac{q_{m}bC_{s}}{1 + bC_{s}}$	$\frac{C_s}{q_s} = \frac{C_s}{q_m} + \frac{1}{q_m b}$	
	$q_{e} = \frac{q_{m}K_{L}C_{e}}{1 + K_{L}C_{e}}$	$\frac{1}{q_{\varepsilon}} = \frac{1}{q_m} + \frac{1}{q_m K_L} \cdot \frac{1}{C_{\varepsilon}}$	(2)
Frojndlih	$q_{s} = K_{F} C_{s}^{1/n}$	$lnq_{e} = lnK_{F} + \frac{1}{n} lnC_{e}$	(3)
Temkin	$q_{\varepsilon} = \frac{RT}{b_T} \ln(A_T C_{\varepsilon})$	$q_{s} = \frac{RT}{b_{T}} \ln(A_{T}) + (\frac{RT}{b_{T}}) \ln(A_{T}) + (\frac{RT}{b_{$	(4)
Dubinin–Raduške vič	$q_{\varepsilon} = q_m exp(-\beta \varepsilon^2$	$lnq_{\varepsilon} = lnq_m - \beta \varepsilon^2$	(5)

Tabela 1. Jednačine modela izotermi

Lengmirov model opisuje monoslojnu adsorpciju, gde na površini adsorbenta postoji određeni broj mesta na koja mogu da se vežu molekuli adsorbata. Svi aktivni centri na površini adsorbenta su energetski jednaki, nema interakcije između adsorbovanih molekula, a čestice adsorbata ne mogu da se kreću po površini sorbenta [Karanac, 2018]. Frojndlihova izoterma primenjuje se za opisivanje višeslojne adsorpcije na heterogenoj površini adsorbenta sa eksponencijalnom raspodelom aktivnih centara i energije. Temkinov model pretpostavlja da se površina adsorbenta sastoji od mesta sa različitim energijama adsorpcije, dok je kod Lengmirovog modela pretpostavka bila da je cela površina homogenog energetskog sadržaja. Dubinin–Raduškevičova izoterma opisuje mehanizam i prirodu adsorpcionog procesa, pre svega na mikroporoznim adsorbentima. Bazira se na Polanijevoj (eng. *Polanyi*) potencijalnoj teoriji adsorpcije i Polani-Dubininovoj teoriji koja pretpostavlja da je mehanizam adsorpcije u mikroporama proces "punjenja zapremine" pre nego formiranje adsorpcionog filma (sloja) na zidovima pora mehanizmom "sloj po sloj", [Fabrianto et al., 2009].

Adsorpciona kinetika

Adsorpcija predstavlja proces akumulacije supstanca iz gasne ili tečne faze na površini nekog čvrstog materijala. Postoje brojni matematički modeli koji se koriste za opisuju mehanizam odvijanja procesa adsorpcije analizom eksperimentalnih podataka [Karanac et al., 2018]. U ovom radu za ispitivanje kinetike adsorpcije jona Zn²⁺ na GAC-u korišćeni su modeli prikazani u tabeli 2.

Kinetički model	Nelinearan oblik	Linearan oblik	Jednačina
Pseudo-prvi red	$q_t = q_e (1 - e^{-k_1 t})$	$\ln(q_{s} - q_{t}) = \ln q_{s} - k_{1}t$	(6)
Pseudo-drugi red	$q_t = \frac{t}{\frac{1}{k_2 q_e^2} + \frac{t}{q_e}}$	$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t$	(7)
Drugi red	$q_t = \frac{t}{\frac{1}{k_2 q_e^2} + \frac{t}{q_e}}$	$\frac{\mathbf{t}}{C_t} = k_2 t + \frac{1}{C_0}$	(8)

Tabela 2. Kinetički modeli adsorpcije

Kada se procesi odvijaju na granici faza, brzina prenosa mase je kontolišući stepen ukupne brzine procesa. Difuzioni prenos u procesima adsorpcije na poroznim adsorbentima odvija se u četiri stepena [Tran et al., 2017]: i) prenos adsorbata u masi rastvora, ii) difuzija preko tečnog filma na spoljašnju površinu adsorbenta, iii) difuzija adsorbata kroz pore i/ili duž zidova pora unutar čestica (unutarčestična difuzija) i iv) hemijska reakcija adsorbata sa aktivnim mestima na površini adsorbenta.

Difuzija kroz film ili pore adsorbenta, ili njihova kombinacija, najčešće određuje ukupnu brzinu adsorpcije, jer se pretpostavlja da su najsporiji stupnjevi. Brzina difuzije zavisi od vrednosti koeficijenta difuzije i prostorne

oblasti u kojima se difuzija odigrava. Kinetički rezultati analizirani su: Veber-Morisovim (eng. *Weber-Morris*, W-M), Damvald-Vagnerovim (eng. *Dumwald-Wagner*, D-W) i modelom difuzije na homogenoj površini (eng. *Homogenous Surface Diffusion Model*, HSDM), tabela 3 [Budimirović et al., 2017].

Model	Nelinearan oblik	Jednačin a
Veber- Moris	$\boldsymbol{q}_t = \boldsymbol{k}\sqrt{t} + \boldsymbol{C}$	(9)
Damvald- Vagner	$\frac{q_t}{q_e} = 1 - \frac{6}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} exp[-n^2 K t]$ $\log\left(1 - \left(\frac{q_t}{q_e}\right)^2\right) = -\frac{K}{2.303}t$	(10)
Difuzija na homogeno j površini	$\frac{\partial q_t}{\partial t} = \frac{D_s}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial q_t}{\partial r} \right)$ $\frac{q_t}{q_s} = 1 + \frac{2R}{\pi r} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin \frac{n\pi r}{R} \exp\left[\frac{-D_s t \pi^2 n^2}{R^2}\right]$	(11)

Tabela 3. Difuzioni modeli adsorpcije

Veber-Morisov model (model unutarčestične difuzije) razmatra se kada je difuzija adsorbata kroz adsorbent stepen koji ograničava brzinu adsorpcije. Model se zasniva se na teoriji da je adsorpcioni kapacitet skoro proporcionalan vrednosti $t^{1/2}$. Različiti mehanizmi prenosa mase prikazani su kao zavisnost q_t od $t^{1/2}$. Ako je zavisnost linearna i prolazi kroz koordinatni početak, unutarčestična difuzija je ograničavajući stupanj reakcije adsorpcije.

Termodinamika adsorpcije

Priroda i obim (granice) adsorpcionog procesa može se odrediti izračunavanjem termodinamičkih parametara kao što su: promena Gibsove slobodne energije (ΔG^0), promena standardne entalpije (ΔH^0) i promena

standardne entropije (ΔS^0). Ovi parametri mogu se izračunati korišćenjem ravnotežnih konstanti koje se menjaju sa temperaturom pomoću Vant Hofovih (eng. *Van`t Hoff*) termodinamičkih jednačina [Xiyili et al., 2017]:

 $\Delta G^{o} = -R T \ln K_{c} \quad (12)$ $\ln K_{c} = \frac{\Delta S^{o}}{R} - \frac{\Delta H^{o}}{R T} \quad (13)$

gde je *T* apsolutna temperatura (K), *R* univerzalna gasna konstanta (8,314 J mol⁻¹ K⁻¹) i K_c standardna konstanta ravnoteže. Umesto vrednosti K_c može se koristiti Lengmirova konstanta *b* (L mol⁻¹) koja se množi sa brojem mol vode u 1 L (55,5 mol L⁻¹) u cilju dobijanja bezdimenzionog parametra, jer je ispitivanje vršeno u vodenom rastvoru.

$$\Delta G^0 = \Delta H^0 - T \Delta S^0 \quad (14)$$

Kada su vrednosti ΔG^{θ} negativne proces adsorpcije se odigrava spontano. Gibsova energija adsorpcije uvek je negativna. Pozitivna vrednosti entalpije, ΔH^{θ} , ($\Delta H^{\theta} > 0$) ukazuje da je adsorpcioni proces endoterman, a negativna vrijednost entalpije, ΔH^{θ} , ($\Delta H^{\theta} < 0$) ukazuje na egzoterman adsorpcioni proces. Kod fizičke adsorpcije vrednosti ΔH^{θ} su između 20 i 80 kJ mol⁻¹ dok je kod hemisorpcije vrijednost ΔH^{θ} je između 100 i 400 kJ mol⁻¹, jer dolazi do vezivanja čestica adsorbata za adsorbent kovalentnim vezama.

Spontani ireverzibilni procesi praćeni su porastom entropije. Entropija služi da se kvantitativno odredi stepen (mera) neuređenosti sistema. Kada je vrednost $\Delta S^0 > 0$, sistem teži većem stepenu neuređenosti između površine adsorbenta i adsorbata.

REZULTATI I DISKUSIJA

Adsorpcione izoterme

Ravnotežno stanje između rastvora i adsorbenta može se opisati korišćenjem adsorpcionih izotermi koje pokazuju uslove pri kojima je adsorpcioni kapacitet najveći. Za fitovanje eksperimentalnih podataka korišćeni su modeli prikazani u tabeli 1. Dobijeni parametri adsorpcionih izotermi predstavljeni su u tabeli 4.

l.	naučno-stručna	i konferenciia	Kongres studenata	tehnoloških fakulteta"
			· · · · · · · · · · · · · · · · · · ·	

Model izoterme	Parametri modela	Zn ²⁺		
Temperatura, °C		25	35	45
	$q_{\rm m}/{ m mg~g}^{-1}$	43.659	45, 356	47,347
Lengmir	$K_{\rm L}/{\rm L~mg^{-1}}$	0.00091	0,00096	0,00100
Lenginii	$K_{\rm L}/{\rm L}~{\rm mol}^{-1}$	59.77	62,58	65,50
	$\overline{R^2}$	0,99893	0,99857	0,99598
	$K_{\rm F}/{\rm mg~g}^{-1} ~({\rm L~mg}^{-1})^{1/{\rm n}}$	0,022	0,028	0,034
Frojndlih	1/n	1,144	1,118	1,094
	R^2	0,99561	0,99935	0,99797
Temkin	$A_{\rm T}/{\rm L~g}^{-1}$	0,019	0,020	0,022
	b_{T}	340,82	350,79	359,56
	<i>B</i> /kJ mol ⁻¹	7,27	7,30	7,36
	R^2	0,92501	0,95149	0,96794
Dubinin- Raduškevič	$q_{\rm m}/{ m mg~g}^{-1}$	10,25	10,62	11,02
	$K_{\rm ad}/{\rm mol}^2~{\rm kJ}^{-2}$	8,76	8,73	8,69
	$E_{a}/kJ \text{ mol}^{-1}$	7,554	7,570	7,586
	R^2	0,886	0,885	0,899

Tabela 4. Parametri adsorpcionih izotermi za uklanjanje jona Zn²⁺ na GAC-u

Adsorpcioni kapacitet povećava se sa porastom temperature. Poređenjem ravnotežnih podataka za adsorpciju jona Zn^{2+} primećen je isti trend slaganja sa modelima izotermi kako sledi: Lengmir>Frojndlih > Temkin > Dubinin-Raduškevič.

Kinetika adsorpcije

Rezultati kinetičkih parametara pseudo-prvog, pseudo-drugog (PSO) i drugog reda za uklanjanje jona Zn^{2+} predstavljeni su u tabeli 5. Prema vrednostima koeficijenata determinacije eksperimentalni podaci najbolje odgovaraju PSO modelu, i pokazuju dobro slaganje vrednosti q_e sa eksperimentalnim, prikazanim u tabeli 5. Kinetika adsorpcije jona Zn^{2+} na GAC-u odvija se prema jednačini pseudo-drugog reda.

Adsorbat/1	ed reakcije	Pseudo-prvi	Pseudo-drugi	Drugi red
- 2+	$q_{\rm e}/{\rm mg~g}^{-1}$	26,332	19,203	19,203
Zn ²⁺	$k(k_1, k_2)$	0,000352	0,001549	1.591E-06
	R^2	0,658	0,997	0.716

Tabela 5. Kinetički parametri uklanjanja Zn²⁺ na GAC-u

Kinetika adsorpcije u heterogenom sistemu tečno–čvrsto može biti kontrolisana sa nekoliko nezavisnih stupnjeva. Kod primene PSO jednačine proces adsorpcije razmatra se kao jedan stupanj. Kako bi se odredio stvarni stepen koji kontroliše brzinu adsorpcije primenjen je difuzioni model Veber-Moris (W-M) koji obuhvata četiri uzastopna stupnja: i) prenos mase adsorbata iz rastvora na spoljašnju površinu adsorbenta, ii) difuzija kroz tečni film koji okružuje površinu čestica (spoljašnja difuzija ili film difuzija), iii) difuzija kroz pore unutar čestica (unutarčestična difuzija), i iv) hemijska reakcija (adsorpcija/desorpcija, jonska izmena, taloženje, kompleksiranje) adsorbata sa aktivnim mestima na površini adsorbenta (Taleb et al. 2016). Pored modela W-M, korišćeni su i modeli D-W i HSDM (difuzija kroz film na homogenoj površini) model za određivanje fenomena prenosa mase procesa tokom procesa adsorpcije. Konstante brzine određene korišćenjem W-M, D-W i HSDM modela za uklanjanje jona Zn²⁺ na GAC-u prikazane su u tabeli 6.

Na osnovu izračunatih konstanti brzina primenom W-M modela (tabela 5) može se zaključiti da je unutarčestična difuzija stepen koji određuje brzinu procesa adsorpcije. Stepen adsorpcije opisan primenom PSO i W-M modela, može se tumačiti kao veća pokretljivost i manja zapremina hidratisanih katjonskih kompleksa u vodenom rastvoru (Visa and Chelaru, 2014).

1. naučno-stručna konferencija "Kongres studenata tehnoloških fakulteta"

Model	Konstante	Zn^{2+}
Veber-Moris	$k_{p1} / \text{mg g}^{-1} \text{min}^{-0,5}$	0.6514
(stuponi 1)	$C / \text{mg g}^{-1}$	5.429
(stupatij 1)	R^2	0.997
Veber-Moris	$k_{\rm p2}/{\rm mg~g}^{-1}{\rm min}^{-0.5}$	0.1351
(stupani 2)	$C / \text{mg g}^{-1}$	13.781
(R^2	0.998
Damvald-Vagner	K	0.002312
Dunivura vugner	R^2	0.972
HSDM	Ds	2.59E-12
	R^2	0.948

Tabela 6. Parametri W-M, D-W i HSDM modela unutarčestične difuzije za adsorpciju Zn²⁺

Termodinamika adsorpcije

Uticaj temperature na proces adsorpcije ispitan je na temperaturama 298, 308 i 318 K. Dobijeni termodinamički parametri predstavljeni su u tabeli 7. Negativna vrednosti Gibsove energije ΔG^0 ukazuje da je proces adsorpcije spontan. Smanjenje vrednosti Gibsove energije na višoj temperaturi ukazuje da se spontanost procesa povećava sa povećanjem temperature. Imajući u vidu da je promena ΔG^0 za proces fizisorpcije između -20 i 0 kJ mol⁻¹, za oba procesa fizisorpcije i hemisorpcije između -20 i -80 kJ mol⁻¹ i za hemisorpciju -80 i -400 kJ mol⁻¹ (Liu et al., 2005), dobijene vrednosti ΔG^0 ukazuju da je interakcija jona Zn²⁺, adsorbenta rezultat fizisorpcije i hemisorpcije.

Tabela 7. Termodinamički parametri za uklanjanje jona Zn²⁺ na GAC-u

ΔG^0 / kJ mol ⁻¹				$\Delta H^0 / \text{kJ mol}^{-1}$	ΔS^0 / J mol ⁻¹ K ⁻¹	R^2
	298 K	308 K	318 K			
Zn^{2+}	-20,10	-20,89	-21,69	3,61	79,62	0,999

Pozitivne vrednosti ΔH^0 ukazuju da je uticaj temperature na povećanje adsorpcionog kapaciteta nizak i da je proces endoterman. Pozitivne vrednosti

entropije ΔS^0 ukazuju na afinitet adsorbent GAK-a prema ispitivanim jonima i ukazuje na povećanje stepena neuređenosti sistema usled adsorpcije.

Karakterizacija materijala

Rezultati XRD analize GAC i modifikovanog GAC/Zn²⁺ sorbenata prikazani su na slici 2. Široki pikovi snimljeni na $2\theta = 24,00$ i 43,15° dokaz su amorfne strukture GAC uzorka [Kennedy et al. 2008; Tuan et al. 2011]. Difraktogrami su pokazali da je došlo do strukturnih promena kod Zn²⁺aktiviranog materijala i formiranja ZnO i zink-sulfat-hidroksid-hidrata (Zn₄SO4(OH)6·0.5H2O/ZnSO4·3Zn(OH)2·0.5H2O).

Slika 2. XRD analiza GAC (isprekidana linija) i GAC/Zn²⁺ sorbenta (crvena linija)

Površinska morfologija metalom aktiviranog sorbenata ispitana je primenom FE-SEM tehnike. Reprezentativni snimci GAC i Zn/GAC sorbenata prikazani su na slici 3 (levo i desno, redom). Pokazano je da se GAC uzorak sastoji od čestica raznovrsnih oblika i veličina [Tuan et al. 2011]. Na površini aktiviranog Zn/GAC sorbenta snimljene su promene uzorka u odnosu na prirodan materijal, usled prisustva čestica metala. Morfološke promene Cu/GAC i Zn/GAC modifikovanih sorbenata bile su predmet istraživanja u nekim od prethodnih studija [Kennedy et al. 2008, Zhang et al. 2015].

Slika 3. FE-SEM snimak GAC (levo) i GAC/Zn²⁺ (desno) sa uvećanjem od 10 000 i 70 000

ZAKLJUČCI

Sorpcioni kapacitet GAC/ Zn^{2+} od 47,3 mg g⁻¹ na 45 °C, izračunat preko Lengmirovog (Langmuir) modela, ukazao je da je ovaj ugljenični materijal visoko efikasan adsorbent. Najbolje slaganje kinetičkih parametara sa Veber-Morisovim (Weber-Morris) modelom ukazalo je da je unutarčestična difuzija Zn^{2+} . Na osnovu određujući stepen adsorpcije jona vrednosti termodinamičkih parametara, utvrđeno je da aktivacija materijala (adsorpcija jona Zn²⁺) spontan i endoterman proces. Strukturnom i površinskom karakterizacijom potvrđeno je prisustvo Zn^{2+} na aktivnim površinskim mestima. U skladu sa konceptom ponovne upotrebe materijala i bioodrživosti, iskorišćeni GAC/Zn²⁺ adsorbent mogao bi se dalje primeniti kao antimikrobni nosač (višenamenski materijal).

LITERATURA

- 1. Budimirović, D., Veličković, Z.S., Djokić, V.R., Milosavljević, M., Markovski, J., Lević, S., Marinković, A.D., 2017. Efficient As(V) removal by α -FeOOH and α -FeOOH/ α -MnO 2 embedded PEG-6arm functionalized multiwall carbon nanotubes. Chem. Eng. Res. Des. 119, 75-86.
- Đolić, M.B., Rajaković-Ognjanović, V.N., Štrbac, S.B., Rakočević, Z.Lj., Veljović, Đ.N., Dimitrijević, S.T., Rajaković, L.V., 2015b. The antimicrobial efficiency of silver activated sorbents. Appl. Surf. Sci. 357, 819-831.
- Febrianto, J., Kosasih, A.N., Sunarso, J., Ju, Y.H., Indraswati, N., Ismadji, S., 2009. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J. Hazard. Mater. 162, 616-645.

- Foo, K.Y., Hameed, B.H., 2010. Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal 156, 2-10.
- Karanac, M., Đolić, M., Veljović, Đ., Rajaković-Ognjanović, V., Veličković, Z., Pavićević', V., Marinković, A., 2018. The removal of Zn²⁺, Pb²⁺, and As(v) ions by lime activated fly ash and valorization of the exhausted adsorbent, Waste Management 78, 366-378.
- Karanac, M.M.(2018). Primena elektrofilterskog pepela modifikovanog kalcijum-hidroksidom i oksidima železa za uklanjanje jona teških metala iz vode (Doktorska disertacija). Preuzeta 1. oktobra 2018.sa: https://uvidok.rcub.bg.ac.rs/bitstream/handle/123456789/2977/Dokto rat.pdf.
- Kennedy, L.J., Kumar, A.G., Ravindran, B., Sekaran, G., 2008. Copper impregnated mesoporous activated as a high efficient catalyst for the complete destruction of pathogens in water. Environ. Prog. 27, 40–50.
- Milenković D.D., Rajaković Lj. V., Stoiljković S., 2004. The sorption of cyanides from the water onto activated carbon. Facta Univ. Ser.: Work. Living Environ. Prot. 2 (4), 251–258.
- Stojaković Đ., Hrenovic J., Mazaj M., Rajić N., 2011. On the zink sorption by the Serbian natural clinoptilolite and the disinfecting ability and phosphate affinity of the exhausted sorbent. J. Hazard. Mater. 185, 408-415.
- Taleb, K., Rusmirovic, J., Rancic, M., Nikolic, J., Drmanic, S., Velickovic, Z., Marinkovic, A., 2016. Efficient pollutants removal by amino-modified nanocellulose impregnated with iron oxide. J. Serb. Chem. Soc. 81, 1199-1213.
- Tran, H.N., You, S.-J., Hosseini-Bandegharaei, A., Chao, H.-P., 2017. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res 120, 88-116.
- Tuan, T.Q., Son, N.V., Dung, H.T.K., Luong, N.H., Thuyb, B.T., Anhb, N.T.V., Hoac, N.D., Haia, N.H., 2011. Preparation and properties of silver nanoparticles loaded in activated carbon for biological and environmental applications. J. Hazard. Mater. 192, 1321-1329.
- Visa, M., Chelaru, A.-M., 2014. Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment. Appl. Surf. Sci. 303, 14-22.
- 14. Xiyili, H., Çetintaş, S., Bingöl, D., 2017. Removal of some heavy metals onto mechanically activated fly ash: Modeling approach for

optimization, isotherms, kinetics and thermodynamics. Process Saf. Environ. Prot. 109, 288-300.

 Zhang, G., Zhang, H., Zhang, X., Zeng, W., Su, Q., Du, G., Duan, H., 2015. Solid-solution-like ZnO/C composites as excellent anode materials for lithium ion batteries. Electrochim. Acta 186, 165-173.