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Abstract 
Laterite ores are becoming the most important global source of nickel and cobalt. 

Pyrometallurgical processing of the laterites is still a dominant technology, but the share 

of nickel and cobalt produced by the application of various hydrometallurgical 

technologies is increasing. Hydrometallurgy is a less energy-demanding process, 

resulting in lower operational costs and environmental impacts. This review covers past 

technologies for hydrometallurgical processing of nickel and cobalt (Caron), current 

technologies (high-pressure acid leaching, atmospheric leaching, heap leaching), 

developing technologies (Direct nickel, Neomet) as well as prospective biotechnologies 

(Ferredox process). 
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1. Introduction 
For many years, the nickel and cobalt were dominantly produced pyro-

metallurgically from the sulfide ores. The nickel sulfide ores account for approximately 

30 % of the global nickel deposits, the rest of the nickel in Earth’s crust is contained in 

laterites – an oxide ores. Nickel production from sulfide ores is reaching a plateau, and a 

gradual shift to the exploitation of laterites was a logical development. In the 1950s, 

approximately 90 % of the nickel was produced from sulfide ores; until 2009, nickel 

production from laterites increased to 50 % of the global production. It is estimated that 

by 2022 72 % of nickel will be extracted from lateritic ores 1. One of the main reasons 

to favor production of the nickel from sulfide ores over laterites is the inability to produce 

high-grade mineral concentrates from lateritic ores. Mineral concentrates produced from 

nickel sulfide ores contain 10-26 % of Ni, while beneficiation of laterite ores results in 

concentrates with only two-fold and rarely three-fold increase in Ni concentration 2 

resulting in mineral concentrates with 3-5 % of Ni. As a consequence, the production of 

nickel and cobalt from laterites requires significantly larger processing facilities causing 

more considerable capital costs in comparison to Ni and Co production from sulfide ores. 

Also, heterogeneous and complex mineralogy of laterites is often an obstacle for 

achieving satisfactory yields of nickel and cobalt during pyrometallurgical processing. 

Therefore a hydrometallurgical treatment of lateritic ore is a challenge for the future. 

Since cobalt belongs to critical metals, a high emphasis is placed on the treatment of 

lateritic ores present in metallurgical activities. 

2. Geology of laterites 
Laterites are supergene ore bodies formed by chemical and mechanical weathering of the 

magmatic (ultramafic) rocks. Weathering of the ultramafic rock is influenced by climate, 

geomorphology, pH, and Eh of the circulating water, tectonics, chemical, and mineralogical 

composition of the parent rock. The weathering rate varies from 10 to 50 meters per million years 3. 

Chemical weathering mobilizes the most soluble elements (Mg, Ca, and Si) and concentrates the least 

soluble elements (Fe, Ni, Mg, Zn, Co, Y, Cr, Al, Ti, Cu) 4. All lateritic ore deposits follow a similar 

weathering profile. At the bottom of the deposit is an unweathered protolith constituted mainly of 
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olivine and pyroxene minerals. Above this is a saprolite layer with hydrous Mg and Ni rich silicates 

(a serpentine group of minerals) and also some lizardite, magnetite, goethite, maghemite, and 

chromite. Above the saprolite zone is a clay rich zone constituted mostly of nontronite, beidellite, 

montmorillonite, and saponite minerals. At the top of the laterite deposit is a limonite layer consisted 

mostly of iron oxides (goethite and hematite) covered with an iron cap (or iron crust). Lateritic ore 

bodies can be divided into three subtypes 3: 

1. Oxide laterites are mostly constituted of the limonite zone. Limonite zone is 

formed after hydrolysis of the olivine, pyroxene, and serpentine minerals. The 

olivine is the first mineral to be hydrolyzed, releasing silicon and Mg2+ ions from 

the rock matrix. Ferrous iron is also leached from the rock, and then oxidized 

and precipitated as ferric hydroxide, initially amorphous and then progressively 

crystalized to form goethite. Nickel and cobalt ions leached from the ultramafic 

rock have an affinity for the amorphous ferric hydroxides and are incorporated 

in their structure by a combination of adsorption and replacement of ferric iron. 

Oxidation of goethite leads to the formation of hematite. Limonite zones in 

laterites can be divided in two subzones: “yellow limonite” dominated by 

goethite, and above it “red limonite” dominated be hematite. The Limonite zone 

is covered with iron crust. 

2. Clay laterites are formed in colder and drier climates. In these conditions, silica 

is not leached from the rock matrix as in the humid tropical areas. The Ni and 

Co are concentrated in the zone dominated by smectite clay nontronite. In the 

nontronite crystal lattice, Fe2+ ions can be substituted by nickel ions. Clay 

laterites typically contain 1.0 – 1.5 % of nickel. 

3. Silicate laterites are formed as a result of the slow tectonic uplift with a low 

water table in the profile. The thick saprolite zone is formed covered with a thin 

limonite zone. Saprolite zone is dominated by serpentine minerals, goethite, 

smectite clays, and garnierite (mixed structure of hydrous Ni-Mg silicates with 

a high content of Ni). Nickel is incorporated into saprolites by substitution of 

Mg in secondary serpentines. The usual content of Ni in silicate laterites is 2.0-

3.0 %. Zones rich in garnierite can have up to 20 % of Ni. 

Lateritic Ni/Co deposits are located mostly in the tropical areas, approximately 20 

degrees north and south of the equator, but some lateritic deposits occur in the non-

tropical areas in Europe (Balkan peninsula and Ural mountain), Asia (Turkey, 

Kazakhstan) and USA (Oregon, California and North Carolina) 5, 6. Lateritic ores 

usually contain between 0.8 and 3 % of Ni and 0.1-0.2 % of cobalt. Due to the high price 

of cobalt on the global metal market, the production of cobalt from laterites is 

economically feasible. These elements can be concentrated in any layer of the rock 

weathering profile: 

• Limonite zone (1-1.7 % Ni, 0.1-0.2 % Co) 

• Clay rich zone, sometimes designated as nontronite zone (1-5 % Ni, 0-0.05 % 

Co) 

• Transition zone (1.5-2 % Ni, 0.05-0.1 % Co) 

• Saprolite zone (2-3 % Ni, 0.05-0.1 % Co) 

Pyrometallurgical processing of laterites (ferro-nickel and matte smelting) is 

suitable for lateritic ores consisted mostly of saprolitic zone. In order to have satisfactory 

yields of Ni the ore must meet some specific criteria, such as Fe/Ni ratio 12, Ni/Co ratio 

40, and SiO2/MgO ratio 1.9. Ferro-nickel smelters require ores with Ni grade >1.8 %. 
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Pyrometallurgical nickel production from laterites follows conventional flow sheet, 

which includes upgrading of the ore in the mine, drying, calcining/reduction and smelting 

in the electric furnace in order to produce ferronickel or low-iron matte 1. 

Hydrometallurgical approach for nickel and cobalt extraction can be applied for 

the treatment of all three types of the laterite ores. 

3. Hydrometallurgical processing of laterites 
Table 1 shows an overview of the hydrometallurgical technologies for the recovery 

of nickel from laterites. The technologies were selected based on their application on 

commercial or pilot scale and innovative potential. Some of the processes were applied 

on a large production scale (HPAL, Caron, and heap leaching), some of them are on the 

pilot-scale of production (Direct nickel, Neomet), and Ferredox process is the theoretical 

concept based on laboratory-scale research. 

Table 1. Overview of the technologies for hydrometallurgical nickel extraction from 

laterites. 

Process Ore type Lixiviant 
Leaching 

time 

Temperature, 

°C 

Pressure, 

kPa 

Ni and Co 

extraction, 

% 

High pressure 

Acid Leaching 

(HPAL) 

Limonite H2SO4 90 min 245-250 4000 90-95 

Caron process Limonite 
NH3 -

(NH4)2CO3 
n.a. 850 Ambiental 80-85 

Heap Leaching 

(HL)  
Saprolite H2SO4 

120-150 

days 
Ambiental Ambiental 70-80 

Atmospheric 

Tank Leaching 

(AL)  

Limonite and 

saprolite 
H2SO4 12 hours 95 Ambiental 85-95 

Direct nikel 
Limonite and 

saprolite 
HNO3 2-4 hours 105 Ambiental >90 

Ferredox 

reductive 

bioleaching 

(concept) 

Limonite 

H2SO4  

acidophilic 

bacteria 

7 days 30 Ambiental 80-85 

Hydrochloric 

acid leaching 

(Neomet 

process) 

Limonite and 

saprolite 
HCl n.a. 100-110 Ambiental >95 

 

3.1.  Caron process 

The Caron process, developed by professor Caron in the 1920s, is a hybrid between 

pyrometallurgy and hydrometallurgy. The limonite ore is roasted in order to selectively 

reduce Ni and Co to metal forms. These metals are then leached by ammonia/ammonium 

carbonate solution. A small amount of iron is reduced to form an alloy with Ni and Co 

6-9: 

The roasting reaction at 850 °C: 
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NiO2 + 2Fe2O3 + 3H2 → FeNi + Fe3O4 + 3H2O 1 

After cooling to 150-200 °C the ore is treated with ammonia/ammonium carbonate 

solution: 

FeNi + 1.25O2 + 2.5H2O + 4NH3 + (NH4)2CO3 → Ni(NH3)6CO3 + Fe(OH)3   2 

After solid-liquid separation, the Co is recovered as cobalt sulfide, and Ni is 

recovered as nickel carbonate. The nickel carbonate is further calcined in order to produce 

a final product - nickel oxide. 

2 Ni(NH3)6CO3 + steam (H2O) → Ni2(OH)2CO3(s) + 12NH3 +CO2  3 

The Caron process is a well proven technology. Ammonia is recycled during the 

process, so the reagent costs are low and leaching step is highly selective for Ni and Co. 

Recovery rates of Ni and Co can be relatively low in comparison to HPAL (<90 % Ni, 

<80 % Co) and energy demand for ore roasting is very high which increases operating 

costs. 

3.2.  High pressure acid leaching 

High pressure acid leaching (HPAL) is based on a sulfuric acid leaching of Ni and 

Co from laterites under elevated temperature (240-270 °C) and pressure (4000 kPa) in an 

autoclave. The rate of the chemical reaction is accelerated by high temperature and 

pressure. The leaching process is very efficient, as it finishes in just 60-90 minutes with 

Ni and Co recovery over 95 %. Iron precipitates as hematite during hydrolysis at 

temperatures more than 200°C in an acidic solution (pH= 2-3), which reduces acid 

consumption and removes iron, preventing it from affecting Ni and Co separation from 

the pregnant leach solution.  

Nickel and cobalt leaching reactions are: 

NiO + H2SO4 → NiSO4 + H2O 4 

CoO + H2SO4 → CoSO4 + H2O 5 

HPAL process is suitable for processing limonite ores since silicate and clay ores 

contain acid consuming gangue minerals, which affects the overall economy of the 

process. High acid consumption of 350-500 kg per ton of ore is one of the main 

disadvantages of the HPAL, so the profitability of the HPAL operations depends on the 

availability and price of the sulfuric acid. Also, capital costs for HPAL can be high. 

Because of the highly corrosive environment, expensive titanium lined autoclaves are 

required 6-10. 

3.3.  Atmospheric acid leaching 

The limonite and saprolite ores are leached with concentrated sulfuric acid in 

stirred tanks at atmospheric pressure. The process is undertaken at 100 °C, and leaching 

time is up to 12 hours using 2 mol/L H2SO4 and solid/liquid ratio of 0.1. In the first step, 

the Ni and Co are leached from the limonitic ore, then the excess of sulfuric acid in the 

slurry is neutralized by the addition of the saprolite ore, releasing more Ni and Co into 

solution. The process can be applied to low-grade ores (<1.5 % Ni), and recoveries of Ni 

and Co are relatively high (>90 % for Ni and >80 % Co). The main disadvantages of this 
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process are long leaching time and high acid consumption, higher in comparison to HPAL 

(500-700 kg per ton of ore) 7-10. 

3.4.  Heap leaching 

Heap leaching with sulfuric acid was first investigated for the treatment of Greek 

laterites 11, 12 but further research showed that heap leaching could be applied for Ni 

and Co leaching from saprolitic ores from different parts of the world 1. Recoveries of 

nickel are in the range of 65-85 % over 120-150 days with acid consumption of 200-600 

kg per ton of ore. Relatively low capital and operational expenses are the main advantages 

of this process, but slow leaching rate and lower recoveries of Ni and Co are the main 

disadvantages 7, 10. 

3.5.  Direct Nickel Process 

The Direct nickel process (DNP) is based on leaching of limonite and saprolite 

ores with nitric acid in stirred tanks at a temperature of 110 °C and atmospheric pressure. 

The process was developed by Direct Nickel Group from Australia to treat laterite ores 

from Indonesia. The process is efficient, the leaching duration is 2-4 hours, and Ni and 

Co recoveries are >95 %. All reagents used in this process are captured and reused 6, 8, 

9. DNP is a more complex process involving several pH adjustments in the purification 

stage. Firstly, iron was removed during the hydrolysis process at a pH value between 2 

and 3. This slurry is filtered, and the washed hematite filter cake is produced as a by-

product for sale. The iron-free solution is then treated with magnesia (MgO) slurry to 

increase pH and precipitate aluminum hydroxide, which is filtered to produce an Al 

product. The low aluminum solution is now ready for mixed hydroxide precipitation 

where magnesia slurry is again used to raise pH, in a two-stage circuit, and precipitate out 

the mixed hydroxide product (MHP), containing most of the nickel and cobalt recovered 

from the feed. Finally, the nitrogen oxide gases are recovered through a series of 

absorption stages where nitric acid is formed, which is then fed back into the leach circuit. 

3.6.  Chloride leaching and Neomet Process  

Investigation of HCl leaching of Ni and Co from limonite ores began in the 1970s 

10. The most advanced chloride leaching technology is the Neomet Process developed 

by Canadian company Neomet Technologies. In this process hydrochloric acid is applied 

in order to leach Ni and Co from limonitic and saprolitic ores in tanks at atmospheric 

pressure and temperatures 100-110 °C. The engineers of Neomet Technologies also 

developed a patented system to regenerate hydrochloric acid in the process using an 

„atmospheric autoclave“. Ni and Co recoveries are reported to be high (>90 %) 13. 

3.7.  Reductive bioleaching (Ferredox concept) 

Bioleaching is a well-proven technology applied for many years for heap 

bioleaching of copper from low-grade ores, and bio-oxidation of gold-bearing pyrite 

concentrates in stirred tanks 14. Bioleaching of copper from low-grade ores is based on 

bacterially catalyzed oxidation of the copper sulfide minerals 15. Bioleaching of nickel 

from laterites is based on a different approach: bacterial reduction of iron and manganese 

in iron and manganese oxide minerals 16, 17. Some species of heterotrophic and 

autotrophic acidophilic bacteria are facultative anaerobes. In anoxic environments, these 

bacteria can use Fe3+ instead of oxygen as a terminal acceptor of electrons in a respiratory 

chain reducing ferric (Fe3+) to ferrous (Fe2+) iron (equation 6) 18. 

24Fe3+ + C6H12O6  + 6H2O → 24Fe2+ + 6CO2 + 24H+ 6 
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Bridge and Johnson 19 discovered that acidophilic heterotroph Acidiphilium 

cryptum can induce reductive dissolution of iron oxide minerals (such as goethite and 

schwertmannite) in anoxic environments. Bacterially mediated dissolution of 

schwertmannite using glucose as electron donor can be represented by following 

chemical equation: 

3Fe8O8(OH)6(SO4) + C6H12O6 + 6H2O → 24Fe2+ + 6CO2 + 3SO4
2- + 42OH-  7 

A similar mechanism was applied for bioleaching of nickel from lateritic ores 

using iron-oxidizing acidophilic bacteria Acidithiobacillus ferrooxidans. In oxygen-rich 

environments, Acidithiobacillus ferrooxidans provides metabolic energy by oxidation of 

ferrous iron 20, but in the absence of oxygen, these bacteria switch to anaerobic 

metabolism using sulfur and reduced sulfur compounds as electron donors, and ferric iron 

as an electron acceptor. Equation 8 shows the reduction of ferric iron in goethite by 

Acidithiobacillus ferrooxidans using elemental sulfur as the electron donor 21: 

6FeOOH + S0 + 10H+ → 6Fe2+ + SO4
2- + 8H2O  8 

After the dissolution of goethite matrix in the limonite ore which kept nickel atoms 

captured, nickel dissolves in the presence of sulfuric acid as nickel sulfate 22: 

NiO + H2SO4 → NiSO4 + H2O 9 

Cobalt is often associated with manganese oxyhydroxides of the asbolane-

lithiophorite group. Asbolane can be dissolved by the reductive activity of 

Acidithiobacillus ferrooxidans: 

Mn3O3(OH)6 + S0 + 2H2SO4 → 3MnSO4 + 5H2O 10 

After the dissolution of asbolane, cobalt oxide dissolves in sulfuric acid as cobalt 

sulfate: 

Co2O3 + 3H2SO4 → Co2(SO4)3 + 3H2O 11 

Du Plesis et al. 22 proposed Ferredox process for Ni and Co anaerobic reductive 

bioleaching from limonitic laterites.  

The reductive bioleaching process operates at a temperature of 30 °C and a mild 

acidic condition (pH 1.7-2), so in comparison to other hydrometallurgical approaches for 

Ni and Co extraction from laterites (except heap leaching), this process would consume 

less energy and require equipment made of cheaper materials, so the capital and 

operational expenses of the Ferredox process might be relatively low. The economy of 

the process is affected by sulfur and sulfuric acid consumption. The Ferredox process has 

not been tested on a pilot production scale yet. 

4. Overview of the hydrometallurgical operations for Ni and Co extraction 

from lateritic ores 
Table 2 shows an overview of global operations for hydrometallurgical production 

of Ni and Co from lateritic ore deposits. Since the situation on the market changes very 

fast, some of the presented data can be obsolete. The last Caron process operation in 
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Yabulu (Australia) was closed in 2016, so the only commercially applied 

hydrometallurgical processes for nickel and cobalt extraction from laterites are HPAL 

and heap leaching.  

Table 2. Global operations for hydrometallurgical production of Ni and Co from 

lateritic ores. 

Project Country Technology 
Planned annual Ni 

production, kt 
References 

Ravensthorpe Australia HPAL 25 

6 Meta nickel Turkey HPAL 20 

Murrin Murrin Australia HPAL 40 

Goro New Caledonia HPAL 60 

23 

Ambatovy Madagascar HPAL 60 

Ramu Papua New 

Guinea 
HPAL 33 

Taganito Philippines HPAL 36 

Coral Bay Philippines HPAL 24 

Gördes Turkey HPAL 10 

Piaui Brazil Heap leaching 22 

1 

NiWest Australia Heap leaching 14 

Cerro Matoso Colombia Heap leaching 20 

Caldag Turkey Heap leaching 20 

Pearl Indonesia Heap leaching 32 

Gag Island Indonesia Heap leaching 27.3 

Cleopatra USA Heap leaching 21.5 

Acoje  Philippines Heap leaching 24.5 

 

The final product of HPAL and heap leaching is NiSO4, which is used mostly for 

production of the batteries. Increasing global demand for batteries stimulates investment 

in hydrometallurgical plants for production of the Ni from lateritic ores. The economy of 

the hydrometallurgical plants is improved by cobalt production, which is lost in 

pyrometallurgical operations. HPAL provides fast leaching and excellent recovery rate of 

Ni and Co, but technology is complex and sensitive to failures. Many HPAL operations 

worldwide suffered from long rump-up delays and, consequently, high capital 

investments, often billions of dollars higher than initially planned 23, 1. Operational 

expenses of the HPAL process are comparable to pyrometallurgical operations, and in 

some cases, are significantly higher 1. Many HPAL operations are not making a profit 

and survive with the help of subsidies of the local governments, thus providing 

employment in undeveloped regions and supply of the strategically important metals 3. 

On the other hand, heap leaching technology is relatively simple, and capital and 

operational expenses are significantly lower in comparison to HPAL and pyrometallurgy, 

but the leaching rate is very slow. Taking into account long delays in rump-up of almost 

all HPAL plants in the world and difficulties to achieve planned production capacities, 

tortoise sometimes could be faster than Achilles. Approximately 80 % of nickel from 

lateritic deposits is produced pyrometallurgically 23, but the possibility to produce 

cobalt and some other valuable chemical elements from laterites could make the 

hydrometallurgical approach more attractive. For example, some lateritic deposits contain 

rare earth elements (REE) and scandium 24, 25. Nancucheo et al. 25 used reductive 
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bioleaching in order to successfully extract rare earth elements (REE) from Brazilian 

lateritic ore, which contains monazite, the main REE-bearing phosphate mineral. 

Conclusion 
Global nickel production is swinging from production based on nickel sulfide 

minerals to production based on lateritic ore deposits. Although nickel and cobalt can be 

successfully extracted from lateritic ores by application of hydrometallurgical 

technologies, pyrometallurgy is still dominant technology for their extraction from 

laterites. The hydrometallurgy usually cannot compete with pyrometallurgy with respect 

to the efficiency of the process. High-pressure acid leaching (HPAL) is a 

hydrometallurgical technology for nickel extraction from laterites which can compete 

with pyrometallurgy, but capital and operational expenses are also comparable to 

pyrometallurgical operations. Investors are more likely to invest their money in well-

proven technology, like smelters. Many HPAL operations failed or suffered from long 

rump-up delays, huge unplanned capital expenses and inability to reach planned annual 

production. So, the cautiousness of the investors is understandable. The 

hydrometallurgical technology for the treatment of laterites should be relatively simple, 

with significantly lower capital and operational expenses in comparison to HPAL and 

pyrometallurgy, with a high recovery rate of Ni and Co (and possibly other valuable 

elements) and reasonable leaching time. The sulfuric acid heap leaching mostly 

corresponds to the previous description, but leaching time is too long. The investigations 

of the reductive heap bioleaching of lateritic ores are at the beginning, and literature data 

is lacking. The catalytic role of the bacteria might significantly speed up the leaching 

process in comparison to leaching with sulfuric acid only. This might be the most 

promising approach to develop a hydrometallurgical process for Ni and Co recovery from 

lateritic deposits. The new challenge is also recovery of scandium (about 100 ppm) from 

lateritic ore using hydrometallurgical operations: high-pressure leaching in an autoclave, 

solvent extraction, and precipitation process. 
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