Basic Science Research Program of the Ministry of Education, Science and Technology of Korea [2018R1A2B5A02023190]

Link to this page

Basic Science Research Program of the Ministry of Education, Science and Technology of Korea [2018R1A2B5A02023190]

Authors

Publications

Assessing the Bioactivity of Gentamicin-Preloaded Hydroxyapatite/Chitosan Composite Coating on Titanium Substrate

Stevanović, Milena; Đošić, Marija; Janković, Ana; Nesović, Katarina; Kojić, Vesna; Stojanović, Jovica; Grujić, Svetlana; Matić-Bujagić, Ivana; Rhee, Kyong Yop; Mišković-Stanković, Vesna

(Amer Chemical Soc, Washington, 2020)

TY  - JOUR
AU  - Stevanović, Milena
AU  - Đošić, Marija
AU  - Janković, Ana
AU  - Nesović, Katarina
AU  - Kojić, Vesna
AU  - Stojanović, Jovica
AU  - Grujić, Svetlana
AU  - Matić-Bujagić, Ivana
AU  - Rhee, Kyong Yop
AU  - Mišković-Stanković, Vesna
PY  - 2020
UR  - https://ritnms.itnms.ac.rs/handle/123456789/554
AB  - The electrophoretic deposition process (EPD) was utilized to produce bioactive hydroxyapatite/chitosan (HAP/CS) and hydroxyapatite/chitosan/gentamicin (HAP/CS/Gent) coatings on titanium. The bioactivity of newly synthesized composite coatings was investigated in the simulated body fluid (SBF) and examined by X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The obtained results revealed carbonate-substituted hydroxyapatite after immersion in SBF, emphasizing the similarity of the biomimetically grown HAP with the naturally occurring apatite in the bone. The formation of biomimetic HAP was confirmed by electrochemical impedance spectroscopy and polarization measurements, through the decrease in corrosion current density and coating capacitance values after 28-day immersion in SBF. The osseointegration ability was further validated by measuring the alkaline phosphatase activity (ALP) indicating the favorable osseopromotive properties of deposited coatings (significant increase in ALP levels for both HAP/CS (3.206 U mL(-1)) and HAP/CS/Gent (4.039 U mL(-1)) coatings, compared to the control (0.900 U mL(-1))). Drug-release kinetics was investigated in deionized water at 37 degrees C by high-performance liquid chromatography coupled with mass spectrometry. Release profiles revealed the beneficial "burst-release effect" (similar to 21% of gentamicin released in the first 48 h) as a potentially promising solution against the biofilm formation in the initial period. When tested against human and mice fibroblast cells (MRC-5 and L929), both composite coatings showed a noncytotoxic effect (viability >85%), providing a promising basis for further medical application trials.
PB  - Amer Chemical Soc, Washington
T2  - ACS Omega
T1  - Assessing the Bioactivity of Gentamicin-Preloaded Hydroxyapatite/Chitosan Composite Coating on Titanium Substrate
EP  - 15445
IS  - 25
SP  - 15433
VL  - 5
DO  - 10.1021/acsomega.0c01583
UR  - conv_884
ER  - 
@article{
author = "Stevanović, Milena and Đošić, Marija and Janković, Ana and Nesović, Katarina and Kojić, Vesna and Stojanović, Jovica and Grujić, Svetlana and Matić-Bujagić, Ivana and Rhee, Kyong Yop and Mišković-Stanković, Vesna",
year = "2020",
abstract = "The electrophoretic deposition process (EPD) was utilized to produce bioactive hydroxyapatite/chitosan (HAP/CS) and hydroxyapatite/chitosan/gentamicin (HAP/CS/Gent) coatings on titanium. The bioactivity of newly synthesized composite coatings was investigated in the simulated body fluid (SBF) and examined by X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The obtained results revealed carbonate-substituted hydroxyapatite after immersion in SBF, emphasizing the similarity of the biomimetically grown HAP with the naturally occurring apatite in the bone. The formation of biomimetic HAP was confirmed by electrochemical impedance spectroscopy and polarization measurements, through the decrease in corrosion current density and coating capacitance values after 28-day immersion in SBF. The osseointegration ability was further validated by measuring the alkaline phosphatase activity (ALP) indicating the favorable osseopromotive properties of deposited coatings (significant increase in ALP levels for both HAP/CS (3.206 U mL(-1)) and HAP/CS/Gent (4.039 U mL(-1)) coatings, compared to the control (0.900 U mL(-1))). Drug-release kinetics was investigated in deionized water at 37 degrees C by high-performance liquid chromatography coupled with mass spectrometry. Release profiles revealed the beneficial "burst-release effect" (similar to 21% of gentamicin released in the first 48 h) as a potentially promising solution against the biofilm formation in the initial period. When tested against human and mice fibroblast cells (MRC-5 and L929), both composite coatings showed a noncytotoxic effect (viability >85%), providing a promising basis for further medical application trials.",
publisher = "Amer Chemical Soc, Washington",
journal = "ACS Omega",
title = "Assessing the Bioactivity of Gentamicin-Preloaded Hydroxyapatite/Chitosan Composite Coating on Titanium Substrate",
pages = "15445-15433",
number = "25",
volume = "5",
doi = "10.1021/acsomega.0c01583",
url = "conv_884"
}
Stevanović, M., Đošić, M., Janković, A., Nesović, K., Kojić, V., Stojanović, J., Grujić, S., Matić-Bujagić, I., Rhee, K. Y.,& Mišković-Stanković, V.. (2020). Assessing the Bioactivity of Gentamicin-Preloaded Hydroxyapatite/Chitosan Composite Coating on Titanium Substrate. in ACS Omega
Amer Chemical Soc, Washington., 5(25), 15433-15445.
https://doi.org/10.1021/acsomega.0c01583
conv_884
Stevanović M, Đošić M, Janković A, Nesović K, Kojić V, Stojanović J, Grujić S, Matić-Bujagić I, Rhee KY, Mišković-Stanković V. Assessing the Bioactivity of Gentamicin-Preloaded Hydroxyapatite/Chitosan Composite Coating on Titanium Substrate. in ACS Omega. 2020;5(25):15433-15445.
doi:10.1021/acsomega.0c01583
conv_884 .
Stevanović, Milena, Đošić, Marija, Janković, Ana, Nesović, Katarina, Kojić, Vesna, Stojanović, Jovica, Grujić, Svetlana, Matić-Bujagić, Ivana, Rhee, Kyong Yop, Mišković-Stanković, Vesna, "Assessing the Bioactivity of Gentamicin-Preloaded Hydroxyapatite/Chitosan Composite Coating on Titanium Substrate" in ACS Omega, 5, no. 25 (2020):15433-15445,
https://doi.org/10.1021/acsomega.0c01583 .,
conv_884 .
30
9
32

Antibacterialgraphene-basedhydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering

Stevanović, Milena; Đošić, Marija; Janković, Ana; Kojić, Vesna; Vukasinović-Sekulić, Maja; Stojanović, Jovica; Odović, Jadranka; Crevar-Sakac, Milkica; Yop, Rhee Kyong; Mišković-Stanković, Vesna

(Wiley, Hoboken, 2020)

TY  - JOUR
AU  - Stevanović, Milena
AU  - Đošić, Marija
AU  - Janković, Ana
AU  - Kojić, Vesna
AU  - Vukasinović-Sekulić, Maja
AU  - Stojanović, Jovica
AU  - Odović, Jadranka
AU  - Crevar-Sakac, Milkica
AU  - Yop, Rhee Kyong
AU  - Mišković-Stanković, Vesna
PY  - 2020
UR  - https://ritnms.itnms.ac.rs/handle/123456789/544
AB  - Electrophoretic deposition process (EPD) was successfully used for obtaining graphene (Gr)-reinforced composite coating based on hydroxyapatite (HAP), chitosan (CS), and antibiotic gentamicin (Gent), from aqueous suspension. The deposition process was performed as a single step process at a constant voltage (5 V, deposition time 12 min) on pure titanium foils. The influence of graphene was examined through detailed physicochemical and biological characterization. Fourier transform infrared spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, Raman, and X-ray photoelectron analyses confirmed the formation of composite HAP/CS/Gr and HAP/CS/Gr/Gent coatings on Ti. Obtained coatings had porous, uniform, fracture-free surfaces, suggesting strong interfacial interaction between HAP, CS, and Gr. Large specific area of graphene enabled strong bonding with chitosan, acting as nanofiller throughout the polymer matrix. Gentamicin addition strongly improved the antibacterial activity of HAP/CS/Gr/Gent coating that was confirmed by antibacterial activity kinetics in suspension and agar diffusion testing, while results indicated more pronounced antibacterial effect againstStaphylococcus aureus(bactericidal, viable cells number reduction >3 logarithmic units) compared toEscherichia coli(bacteriostatic, LT 3 logarithmic units).MTT assay indicated low cytotoxicity (75% cell viability) against MRC-5 and L929 (70% cell viability) tested cell lines, indicating good biocompatibility of HAP/CS/Gr/Gent coating. Therefore, electrodeposited HAP/CS/Gr/Gent coating on Ti can be considered as a prospective material for bone tissue engineering as a hard tissue implant.
PB  - Wiley, Hoboken
T2  - Journal of Biomedical Materials Research Part A
T1  - Antibacterialgraphene-basedhydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering
EP  - 2189
IS  - 11
SP  - 2175
VL  - 108
DO  - 10.1002/jbm.a.36974
UR  - conv_882
ER  - 
@article{
author = "Stevanović, Milena and Đošić, Marija and Janković, Ana and Kojić, Vesna and Vukasinović-Sekulić, Maja and Stojanović, Jovica and Odović, Jadranka and Crevar-Sakac, Milkica and Yop, Rhee Kyong and Mišković-Stanković, Vesna",
year = "2020",
abstract = "Electrophoretic deposition process (EPD) was successfully used for obtaining graphene (Gr)-reinforced composite coating based on hydroxyapatite (HAP), chitosan (CS), and antibiotic gentamicin (Gent), from aqueous suspension. The deposition process was performed as a single step process at a constant voltage (5 V, deposition time 12 min) on pure titanium foils. The influence of graphene was examined through detailed physicochemical and biological characterization. Fourier transform infrared spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, Raman, and X-ray photoelectron analyses confirmed the formation of composite HAP/CS/Gr and HAP/CS/Gr/Gent coatings on Ti. Obtained coatings had porous, uniform, fracture-free surfaces, suggesting strong interfacial interaction between HAP, CS, and Gr. Large specific area of graphene enabled strong bonding with chitosan, acting as nanofiller throughout the polymer matrix. Gentamicin addition strongly improved the antibacterial activity of HAP/CS/Gr/Gent coating that was confirmed by antibacterial activity kinetics in suspension and agar diffusion testing, while results indicated more pronounced antibacterial effect againstStaphylococcus aureus(bactericidal, viable cells number reduction >3 logarithmic units) compared toEscherichia coli(bacteriostatic, LT 3 logarithmic units).MTT assay indicated low cytotoxicity (75% cell viability) against MRC-5 and L929 (70% cell viability) tested cell lines, indicating good biocompatibility of HAP/CS/Gr/Gent coating. Therefore, electrodeposited HAP/CS/Gr/Gent coating on Ti can be considered as a prospective material for bone tissue engineering as a hard tissue implant.",
publisher = "Wiley, Hoboken",
journal = "Journal of Biomedical Materials Research Part A",
title = "Antibacterialgraphene-basedhydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering",
pages = "2189-2175",
number = "11",
volume = "108",
doi = "10.1002/jbm.a.36974",
url = "conv_882"
}
Stevanović, M., Đošić, M., Janković, A., Kojić, V., Vukasinović-Sekulić, M., Stojanović, J., Odović, J., Crevar-Sakac, M., Yop, R. K.,& Mišković-Stanković, V.. (2020). Antibacterialgraphene-basedhydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering. in Journal of Biomedical Materials Research Part A
Wiley, Hoboken., 108(11), 2175-2189.
https://doi.org/10.1002/jbm.a.36974
conv_882
Stevanović M, Đošić M, Janković A, Kojić V, Vukasinović-Sekulić M, Stojanović J, Odović J, Crevar-Sakac M, Yop RK, Mišković-Stanković V. Antibacterialgraphene-basedhydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering. in Journal of Biomedical Materials Research Part A. 2020;108(11):2175-2189.
doi:10.1002/jbm.a.36974
conv_882 .
Stevanović, Milena, Đošić, Marija, Janković, Ana, Kojić, Vesna, Vukasinović-Sekulić, Maja, Stojanović, Jovica, Odović, Jadranka, Crevar-Sakac, Milkica, Yop, Rhee Kyong, Mišković-Stanković, Vesna, "Antibacterialgraphene-basedhydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering" in Journal of Biomedical Materials Research Part A, 108, no. 11 (2020):2175-2189,
https://doi.org/10.1002/jbm.a.36974 .,
conv_882 .
43
14
45

Gentamicin-Loaded Bioactive Hydroxyapatite/Chitosan Composite Coating Electrodeposited on Titanium

Stevanović, Milena; Đošić, Marija; Janković, Ana; Kojić, Vesna; Vukasinović-Sekulić, Maja; Stojanović, Jovica; Odović, Jadranka; Crevar-Sakac, Milkica; Rhee, Kyong Yop; Mišković-Stanković, Vesna

(Amer Chemical Soc, Washington, 2018)

TY  - JOUR
AU  - Stevanović, Milena
AU  - Đošić, Marija
AU  - Janković, Ana
AU  - Kojić, Vesna
AU  - Vukasinović-Sekulić, Maja
AU  - Stojanović, Jovica
AU  - Odović, Jadranka
AU  - Crevar-Sakac, Milkica
AU  - Rhee, Kyong Yop
AU  - Mišković-Stanković, Vesna
PY  - 2018
UR  - https://ritnms.itnms.ac.rs/handle/123456789/468
AB  - Composite coating of antibiotic gentamicin (Gent), natural polymer chitosan (CS), and hydroxyapatite (HAP) was successfully assessed by applying the electrophoretic deposition (EPD) technique. EPD was performed under optimized deposition conditions (5 V, 12 min) on pure titanium plates, to obtain HAP/CS and HAP/CS/Gent composite coatings in a single step from three-component aqueous suspension, with favorable antibacterial properties. Composite coatings were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray photoelectron analysis, confirming the formation of composite HAP/CS and HAP/CS/Gent coatings on the titanium surface, which is due to intermolecular hydrogen bonds. Employing the XRD technique, HAP was detected by obtaining the characteristic diffraction maximums. Good antibacterial activity of the composite coating loaded with antibiotic (HAP/CS/Gent) was confirmed against Staphylococcus aureus and Escherichia coli, pointing to the high potential for bioapplication. Introduction of gentamicin in HAP/CS/Gent coating caused very mild cytotoxicity in the tested cell lines MRC-5 and L929. MTT testing was used to evaluate cell viability, and HAP/CS was classified as noncytotoxic.
PB  - Amer Chemical Soc, Washington
T2  - ACS Biomaterials Science & Engineering
T1  - Gentamicin-Loaded Bioactive Hydroxyapatite/Chitosan Composite Coating Electrodeposited on Titanium
EP  - 4007
IS  - 12
SP  - 3994
VL  - 4
DO  - 10.1021/acsbiomaterials.8b00859
UR  - conv_839
ER  - 
@article{
author = "Stevanović, Milena and Đošić, Marija and Janković, Ana and Kojić, Vesna and Vukasinović-Sekulić, Maja and Stojanović, Jovica and Odović, Jadranka and Crevar-Sakac, Milkica and Rhee, Kyong Yop and Mišković-Stanković, Vesna",
year = "2018",
abstract = "Composite coating of antibiotic gentamicin (Gent), natural polymer chitosan (CS), and hydroxyapatite (HAP) was successfully assessed by applying the electrophoretic deposition (EPD) technique. EPD was performed under optimized deposition conditions (5 V, 12 min) on pure titanium plates, to obtain HAP/CS and HAP/CS/Gent composite coatings in a single step from three-component aqueous suspension, with favorable antibacterial properties. Composite coatings were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray photoelectron analysis, confirming the formation of composite HAP/CS and HAP/CS/Gent coatings on the titanium surface, which is due to intermolecular hydrogen bonds. Employing the XRD technique, HAP was detected by obtaining the characteristic diffraction maximums. Good antibacterial activity of the composite coating loaded with antibiotic (HAP/CS/Gent) was confirmed against Staphylococcus aureus and Escherichia coli, pointing to the high potential for bioapplication. Introduction of gentamicin in HAP/CS/Gent coating caused very mild cytotoxicity in the tested cell lines MRC-5 and L929. MTT testing was used to evaluate cell viability, and HAP/CS was classified as noncytotoxic.",
publisher = "Amer Chemical Soc, Washington",
journal = "ACS Biomaterials Science & Engineering",
title = "Gentamicin-Loaded Bioactive Hydroxyapatite/Chitosan Composite Coating Electrodeposited on Titanium",
pages = "4007-3994",
number = "12",
volume = "4",
doi = "10.1021/acsbiomaterials.8b00859",
url = "conv_839"
}
Stevanović, M., Đošić, M., Janković, A., Kojić, V., Vukasinović-Sekulić, M., Stojanović, J., Odović, J., Crevar-Sakac, M., Rhee, K. Y.,& Mišković-Stanković, V.. (2018). Gentamicin-Loaded Bioactive Hydroxyapatite/Chitosan Composite Coating Electrodeposited on Titanium. in ACS Biomaterials Science & Engineering
Amer Chemical Soc, Washington., 4(12), 3994-4007.
https://doi.org/10.1021/acsbiomaterials.8b00859
conv_839
Stevanović M, Đošić M, Janković A, Kojić V, Vukasinović-Sekulić M, Stojanović J, Odović J, Crevar-Sakac M, Rhee KY, Mišković-Stanković V. Gentamicin-Loaded Bioactive Hydroxyapatite/Chitosan Composite Coating Electrodeposited on Titanium. in ACS Biomaterials Science & Engineering. 2018;4(12):3994-4007.
doi:10.1021/acsbiomaterials.8b00859
conv_839 .
Stevanović, Milena, Đošić, Marija, Janković, Ana, Kojić, Vesna, Vukasinović-Sekulić, Maja, Stojanović, Jovica, Odović, Jadranka, Crevar-Sakac, Milkica, Rhee, Kyong Yop, Mišković-Stanković, Vesna, "Gentamicin-Loaded Bioactive Hydroxyapatite/Chitosan Composite Coating Electrodeposited on Titanium" in ACS Biomaterials Science & Engineering, 4, no. 12 (2018):3994-4007,
https://doi.org/10.1021/acsbiomaterials.8b00859 .,
conv_839 .
59
34
65