Study of structure-function relationships in the plant cell wall and modifications of the wall structure by enzyme engineering

Link to this page

info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/173017/RS//

Study of structure-function relationships in the plant cell wall and modifications of the wall structure by enzyme engineering (en)
Испитивања односа структура-функција у ћелијском зиду биљака и измене структуре зида ензимским инжењерингом (sr)
Ispitivanja odnosa struktura-funkcija u ćelijskom zidu biljaka i izmene strukture zida enzimskim inženjeringom (sr_RS)
Authors

Publications

Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents

Milojkov, Dušan; Radosavljević-Mihajlović, Ana; Stanić, Vojislav; Nastasijević, B.J.; Radotić, Ksenija; Janković-Častvan, Ivona; Živković-Radovanović, Vukosava

(Elsevier B.V., 2023)

TY  - JOUR
AU  - Milojkov, Dušan
AU  - Radosavljević-Mihajlović, Ana
AU  - Stanić, Vojislav
AU  - Nastasijević, B.J.
AU  - Radotić, Ksenija
AU  - Janković-Častvan, Ivona
AU  - Živković-Radovanović, Vukosava
PY  - 2023
UR  - https://ritnms.itnms.ac.rs/handle/123456789/653
AB  - Nanomaterials based on metal–doped fluorapatite (FAP) have attracted considerable interest as potential next–generation antimicrobial agents. In this study, Cu2+–doped FAP nanocrystals have been successfully synthesized by a neutralization method at room temperature. Their structural, optical, antimicrobial, and hemcompatible properties have been investigated. XRD, FTIR, FESEM, and N2 adsorption–desorption studies indicate the formation of single–phase FAP mesoporous nanopowders, composed of rod–like particles. TEM images confirmed the formation of nanorodes with a length of 60 nm and a width of about 18 nm. Rietveld analysis shows that the Cu2+ ions preferentially substitute Ca2 (6 h) sites in the hexagonal fluorapatite crystal structure. Fluorescence spectroscopy accompanied by MCR–ALS method confirms substitution of Cu2+ ions in FAP crystal lattice with extracting additional d–d band transition at green color from FAP broadband self–activated luminescence in violet–blue color. Antimicrobial studies conducted on Staphylococcus aureus, Escherichia coli and Micrococcus lysodeikticus showed that FAP nanopowder with the highest Cu2+ content have strong bacteriostatic action on Staphylococcus aureus bacterial strain in mediums containing nutrition matters. In addition, this sample in comparison to pure FAP achieved a high percentage of relative reduction of bacterial population for all three species, being >90% in most cases. Fungistatic action is noticed too, throwgh the slowing down mycelium growth of fungus Aspergillus niger, Aspergillus flavus and Penicillium roqueforti and reduction of sporulation of Aspergillus niger species. Cu2+–doped FAP nanocrystals shows a synergistic antimicrobial effect with Cu2+ and F− ions. Concerning the potential biomedical applications, the hemolysis ratios of the Cu2+–doped FAP samples were below 5%. The obtained results pointed out the possible use of the synthesized nanocrystals as broad–spectrum antimicrobial agents for various biomedical and health care preparations.
PB  - Elsevier B.V.
T2  - Journal of Photochemistry and Photobiology B: Biology
T1  - Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents
VL  - 239
DO  - 10.1016/j.jphotobiol.2023.112649
UR  - conv_984
ER  - 
@article{
author = "Milojkov, Dušan and Radosavljević-Mihajlović, Ana and Stanić, Vojislav and Nastasijević, B.J. and Radotić, Ksenija and Janković-Častvan, Ivona and Živković-Radovanović, Vukosava",
year = "2023",
abstract = "Nanomaterials based on metal–doped fluorapatite (FAP) have attracted considerable interest as potential next–generation antimicrobial agents. In this study, Cu2+–doped FAP nanocrystals have been successfully synthesized by a neutralization method at room temperature. Their structural, optical, antimicrobial, and hemcompatible properties have been investigated. XRD, FTIR, FESEM, and N2 adsorption–desorption studies indicate the formation of single–phase FAP mesoporous nanopowders, composed of rod–like particles. TEM images confirmed the formation of nanorodes with a length of 60 nm and a width of about 18 nm. Rietveld analysis shows that the Cu2+ ions preferentially substitute Ca2 (6 h) sites in the hexagonal fluorapatite crystal structure. Fluorescence spectroscopy accompanied by MCR–ALS method confirms substitution of Cu2+ ions in FAP crystal lattice with extracting additional d–d band transition at green color from FAP broadband self–activated luminescence in violet–blue color. Antimicrobial studies conducted on Staphylococcus aureus, Escherichia coli and Micrococcus lysodeikticus showed that FAP nanopowder with the highest Cu2+ content have strong bacteriostatic action on Staphylococcus aureus bacterial strain in mediums containing nutrition matters. In addition, this sample in comparison to pure FAP achieved a high percentage of relative reduction of bacterial population for all three species, being >90% in most cases. Fungistatic action is noticed too, throwgh the slowing down mycelium growth of fungus Aspergillus niger, Aspergillus flavus and Penicillium roqueforti and reduction of sporulation of Aspergillus niger species. Cu2+–doped FAP nanocrystals shows a synergistic antimicrobial effect with Cu2+ and F− ions. Concerning the potential biomedical applications, the hemolysis ratios of the Cu2+–doped FAP samples were below 5%. The obtained results pointed out the possible use of the synthesized nanocrystals as broad–spectrum antimicrobial agents for various biomedical and health care preparations.",
publisher = "Elsevier B.V.",
journal = "Journal of Photochemistry and Photobiology B: Biology",
title = "Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents",
volume = "239",
doi = "10.1016/j.jphotobiol.2023.112649",
url = "conv_984"
}
Milojkov, D., Radosavljević-Mihajlović, A., Stanić, V., Nastasijević, B.J., Radotić, K., Janković-Častvan, I.,& Živković-Radovanović, V.. (2023). Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents. in Journal of Photochemistry and Photobiology B: Biology
Elsevier B.V.., 239.
https://doi.org/10.1016/j.jphotobiol.2023.112649
conv_984
Milojkov D, Radosavljević-Mihajlović A, Stanić V, Nastasijević B, Radotić K, Janković-Častvan I, Živković-Radovanović V. Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents. in Journal of Photochemistry and Photobiology B: Biology. 2023;239.
doi:10.1016/j.jphotobiol.2023.112649
conv_984 .
Milojkov, Dušan, Radosavljević-Mihajlović, Ana, Stanić, Vojislav, Nastasijević, B.J., Radotić, Ksenija, Janković-Častvan, Ivona, Živković-Radovanović, Vukosava, "Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents" in Journal of Photochemistry and Photobiology B: Biology, 239 (2023),
https://doi.org/10.1016/j.jphotobiol.2023.112649 .,
conv_984 .
2
1

Fabrication and characterization of luminescent Pr3+ doped fluorapatite nanocrystals as bioimaging contrast agents

Milojkov, Dušan; Silvestre, Oscar F.; Stanić, Vojislav; Janjić, Goran V.; Mutavdzić, Dragosav R.; Milanović, Marija; Nieder, Jana B.

(Elsevier, Amsterdam, 2020)

TY  - JOUR
AU  - Milojkov, Dušan
AU  - Silvestre, Oscar F.
AU  - Stanić, Vojislav
AU  - Janjić, Goran V.
AU  - Mutavdzić, Dragosav R.
AU  - Milanović, Marija
AU  - Nieder, Jana B.
PY  - 2020
UR  - https://ritnms.itnms.ac.rs/handle/123456789/534
AB  - Fluorapatite doped with rare-earth elements has a wide-range of biomedical applications. Here, a new type of fluorapatite nanocrystals doped with praseodymium (FAP-Pr) with excitation-emission profiles in visible part of the spectrum is fabricated. Energy levels of Pr3+ activator ion contain metastable multiples states that offer the possibility of efficient multicolor emission lines in FAP nanocrystals. Three types of FAP-Pr nanocrystals with 0.1%, 0.5% and 1% atomic percent of Pr3+ (along with the undoped FAP control sample) are studied. Their novel chemical production method is described, the FAP-Pr nanocrystals structure, biocompatibility and the suitability for cell imaging are analyzed. Physicochemical characterization confirms crystals down to nanometer size. In addition, quantum-chemical calculation predicts that Pr3+ ions are incorporated into the FAP crystal lattice at Ca2 (6 h) sites. In vitro viability results shows that FAP-Pr nanocrystals are nontoxic to live cells. Additionally, the cell uptake of the FAP-Pr nanocrystals is studied using fluorescence-based widefield and confocal microscopy. The nanocrystals show characteristic green emission at 545 nm (P-3(0)-> H-3(5) transition of Pr3+ ion) and orange emission at 600 nm (D-1(2)-> H-3(4)), which we use to discriminate from cell autofluorescence background. Orthogonal projections across 3D confocal stacks show that the nanocrystals are able to enter the cells positioning themselves within the cytoplasm. Overall, the new FAP-Pr nanocrystals are biocompatible and of the tested types, the 0.5% Pr3+ doped nanocrystals show the highest promise as a tracking nanoparticle probe for bioimaging applications.
PB  - Elsevier, Amsterdam
T2  - Journal of Luminescence
T1  - Fabrication and characterization of luminescent Pr3+ doped fluorapatite nanocrystals as bioimaging contrast agents
VL  - 217
DO  - 10.1016/j.jlumin.2019.116757
UR  - conv_869
ER  - 
@article{
author = "Milojkov, Dušan and Silvestre, Oscar F. and Stanić, Vojislav and Janjić, Goran V. and Mutavdzić, Dragosav R. and Milanović, Marija and Nieder, Jana B.",
year = "2020",
abstract = "Fluorapatite doped with rare-earth elements has a wide-range of biomedical applications. Here, a new type of fluorapatite nanocrystals doped with praseodymium (FAP-Pr) with excitation-emission profiles in visible part of the spectrum is fabricated. Energy levels of Pr3+ activator ion contain metastable multiples states that offer the possibility of efficient multicolor emission lines in FAP nanocrystals. Three types of FAP-Pr nanocrystals with 0.1%, 0.5% and 1% atomic percent of Pr3+ (along with the undoped FAP control sample) are studied. Their novel chemical production method is described, the FAP-Pr nanocrystals structure, biocompatibility and the suitability for cell imaging are analyzed. Physicochemical characterization confirms crystals down to nanometer size. In addition, quantum-chemical calculation predicts that Pr3+ ions are incorporated into the FAP crystal lattice at Ca2 (6 h) sites. In vitro viability results shows that FAP-Pr nanocrystals are nontoxic to live cells. Additionally, the cell uptake of the FAP-Pr nanocrystals is studied using fluorescence-based widefield and confocal microscopy. The nanocrystals show characteristic green emission at 545 nm (P-3(0)-> H-3(5) transition of Pr3+ ion) and orange emission at 600 nm (D-1(2)-> H-3(4)), which we use to discriminate from cell autofluorescence background. Orthogonal projections across 3D confocal stacks show that the nanocrystals are able to enter the cells positioning themselves within the cytoplasm. Overall, the new FAP-Pr nanocrystals are biocompatible and of the tested types, the 0.5% Pr3+ doped nanocrystals show the highest promise as a tracking nanoparticle probe for bioimaging applications.",
publisher = "Elsevier, Amsterdam",
journal = "Journal of Luminescence",
title = "Fabrication and characterization of luminescent Pr3+ doped fluorapatite nanocrystals as bioimaging contrast agents",
volume = "217",
doi = "10.1016/j.jlumin.2019.116757",
url = "conv_869"
}
Milojkov, D., Silvestre, O. F., Stanić, V., Janjić, G. V., Mutavdzić, D. R., Milanović, M.,& Nieder, J. B.. (2020). Fabrication and characterization of luminescent Pr3+ doped fluorapatite nanocrystals as bioimaging contrast agents. in Journal of Luminescence
Elsevier, Amsterdam., 217.
https://doi.org/10.1016/j.jlumin.2019.116757
conv_869
Milojkov D, Silvestre OF, Stanić V, Janjić GV, Mutavdzić DR, Milanović M, Nieder JB. Fabrication and characterization of luminescent Pr3+ doped fluorapatite nanocrystals as bioimaging contrast agents. in Journal of Luminescence. 2020;217.
doi:10.1016/j.jlumin.2019.116757
conv_869 .
Milojkov, Dušan, Silvestre, Oscar F., Stanić, Vojislav, Janjić, Goran V., Mutavdzić, Dragosav R., Milanović, Marija, Nieder, Jana B., "Fabrication and characterization of luminescent Pr3+ doped fluorapatite nanocrystals as bioimaging contrast agents" in Journal of Luminescence, 217 (2020),
https://doi.org/10.1016/j.jlumin.2019.116757 .,
conv_869 .
23
8

Effects of Ag+ Ion Doping on UV Radiation Absorption and Luminescence Profiles of Fluorapatite Nanomaterials Obtained by Neutralization Method

Milojkov, Dušan; Stanić, Vojislav; Dimović, S. D.; Mutavdzić, Dragosav R.; Živković-Radovanović, Vukosava; Janjić, Goran V.; Radotić, Ksenija

(Polish Acad Sciences Inst Physics, Warsaw, 2019)

TY  - JOUR
AU  - Milojkov, Dušan
AU  - Stanić, Vojislav
AU  - Dimović, S. D.
AU  - Mutavdzić, Dragosav R.
AU  - Živković-Radovanović, Vukosava
AU  - Janjić, Goran V.
AU  - Radotić, Ksenija
PY  - 2019
UR  - https://ritnms.itnms.ac.rs/handle/123456789/509
AB  - In the present study we have analyzed effects of Ag+ ions doping on energetic profiles of nanophosphors materials based on fluorapatite crystal system. The UV radiation absorption and luminescence properties of monophase fluorapatite (FAP) and Ag+ doped fluorapatite (AgFAP) nanomaterials obtained by neutralization method were investigated using the photoluminescence spectrophotometry. The excitation-emission profiles of nanomaterials were analyzed statistically by MCR-ALS method and number of fluorophores was extracted. FAP lattice absorbed light at 350 nm in the UVA part of spectrum, and with increasing concentration of Ag+ ions new absorption maximum appeared at 270 nm in the UVC part. Fluorescence of FAP nanoparticles was in violet region of visible part of the spectrum, with a red shift to the green region when Ag+ was doped in lattice. MCR-ALS analyses of fluorescence spectra confirm formation of two maxima, at 484 and 505 nm, as a consequence of Ag+ ions doping in FAP lattice at Cal (4f) sites. The results of quantum chemical calculations showed that an Ag+ ion is stronger bonded to the binding site 1 (-1352.6 kcal/mol) than to the binding site 2 (-1249.0 kcal/mol). Considering that AgFAP1 nanopowder absorbs photons over all part of UV radiation spectrum, this material might be used as potential radiation protective nanomaterial.
PB  - Polish Acad Sciences Inst Physics, Warsaw
T2  - Acta Physica Polonica A
T1  - Effects of Ag+ Ion Doping on UV Radiation Absorption and Luminescence Profiles of Fluorapatite Nanomaterials Obtained by Neutralization Method
EP  - 91
IS  - 1
SP  - 86
VL  - 136
DO  - 10.12693/APhysPolA.136.86
UR  - conv_863
ER  - 
@article{
author = "Milojkov, Dušan and Stanić, Vojislav and Dimović, S. D. and Mutavdzić, Dragosav R. and Živković-Radovanović, Vukosava and Janjić, Goran V. and Radotić, Ksenija",
year = "2019",
abstract = "In the present study we have analyzed effects of Ag+ ions doping on energetic profiles of nanophosphors materials based on fluorapatite crystal system. The UV radiation absorption and luminescence properties of monophase fluorapatite (FAP) and Ag+ doped fluorapatite (AgFAP) nanomaterials obtained by neutralization method were investigated using the photoluminescence spectrophotometry. The excitation-emission profiles of nanomaterials were analyzed statistically by MCR-ALS method and number of fluorophores was extracted. FAP lattice absorbed light at 350 nm in the UVA part of spectrum, and with increasing concentration of Ag+ ions new absorption maximum appeared at 270 nm in the UVC part. Fluorescence of FAP nanoparticles was in violet region of visible part of the spectrum, with a red shift to the green region when Ag+ was doped in lattice. MCR-ALS analyses of fluorescence spectra confirm formation of two maxima, at 484 and 505 nm, as a consequence of Ag+ ions doping in FAP lattice at Cal (4f) sites. The results of quantum chemical calculations showed that an Ag+ ion is stronger bonded to the binding site 1 (-1352.6 kcal/mol) than to the binding site 2 (-1249.0 kcal/mol). Considering that AgFAP1 nanopowder absorbs photons over all part of UV radiation spectrum, this material might be used as potential radiation protective nanomaterial.",
publisher = "Polish Acad Sciences Inst Physics, Warsaw",
journal = "Acta Physica Polonica A",
title = "Effects of Ag+ Ion Doping on UV Radiation Absorption and Luminescence Profiles of Fluorapatite Nanomaterials Obtained by Neutralization Method",
pages = "91-86",
number = "1",
volume = "136",
doi = "10.12693/APhysPolA.136.86",
url = "conv_863"
}
Milojkov, D., Stanić, V., Dimović, S. D., Mutavdzić, D. R., Živković-Radovanović, V., Janjić, G. V.,& Radotić, K.. (2019). Effects of Ag+ Ion Doping on UV Radiation Absorption and Luminescence Profiles of Fluorapatite Nanomaterials Obtained by Neutralization Method. in Acta Physica Polonica A
Polish Acad Sciences Inst Physics, Warsaw., 136(1), 86-91.
https://doi.org/10.12693/APhysPolA.136.86
conv_863
Milojkov D, Stanić V, Dimović SD, Mutavdzić DR, Živković-Radovanović V, Janjić GV, Radotić K. Effects of Ag+ Ion Doping on UV Radiation Absorption and Luminescence Profiles of Fluorapatite Nanomaterials Obtained by Neutralization Method. in Acta Physica Polonica A. 2019;136(1):86-91.
doi:10.12693/APhysPolA.136.86
conv_863 .
Milojkov, Dušan, Stanić, Vojislav, Dimović, S. D., Mutavdzić, Dragosav R., Živković-Radovanović, Vukosava, Janjić, Goran V., Radotić, Ksenija, "Effects of Ag+ Ion Doping on UV Radiation Absorption and Luminescence Profiles of Fluorapatite Nanomaterials Obtained by Neutralization Method" in Acta Physica Polonica A, 136, no. 1 (2019):86-91,
https://doi.org/10.12693/APhysPolA.136.86 .,
conv_863 .
3
1