COST Action [CA17128]

Link to this page

COST Action [CA17128]

Authors

Publications

Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres

Popović, Ana; Rusmirović, Jelena D.; Velicković, Zlate; Kovacević, Tihomir; Jovanović, Aleksandar; Cvijetić, Ilija; Marinković, Aleksandar D.

(Elsevier Science Inc, New York, 2021)

TY  - JOUR
AU  - Popović, Ana
AU  - Rusmirović, Jelena D.
AU  - Velicković, Zlate
AU  - Kovacević, Tihomir
AU  - Jovanović, Aleksandar
AU  - Cvijetić, Ilija
AU  - Marinković, Aleksandar D.
PY  - 2021
UR  - https://ritnms.itnms.ac.rs/handle/123456789/589
AB  - In-depth kinetic and column adsorption study for diclofenac, DCF, heavy-metal and oxyanions adsorption on highly effective amino-functionalized lignin-based microsphere adsorbent (A-LMS) is examined. The A-LMS was synthesized via inverse suspension copolymerization of industrial kraft lignin with the amino containing grafting-agent (polyethylene imine), and an epoxy chloropropane cross-linker. The batch adsorption results indicated process spontaneity and feasibility of a high removal capacity: DCF(151.13) >>Cd2+(74.84)>Cr(VI)(54.20)>As(V)(53.12)>Ni2+(49.42 mg g(-1)). The quantum chemical calculated interaction energies reveal stabilization of the A-LMS/DCF complex through the electrostatics and van der Waals interactions. The results from the pseudo-second order and Weber-Morris fitting indicate a fast removal rate; thus, column tests were undertaken. The single resistance mass transfer model, i.e. the mass transfer (kfa) and diffusion coefficient (Deff), shows pore diffusional transport as a rate limiting step. The fitting of the fixed bed column data with empirical models demonstrates the influences of flow rate and adsorbate inlet concentration on the breakthrough behavior. Pore surface diffusion modeling (PSDM) expresses mass transport under applied hydraulic loading rates, calculated breakthrough point adsorption capacities: Cd2+(58.1)>Cr(VI)(54.1)>As(V)(50.9)>>Ni2+(42.9 mg g(-1))), without performing the experimentation on a full pilot-scale level, further confirms the high applicability of the A-LMS biobased adsorbent.
PB  - Elsevier Science Inc, New York
T2  - Journal of Industrial and Engineering Chemistry
T1  - Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres
EP  - 314
SP  - 302
VL  - 93
DO  - 10.1016/j.jiec.2020.10.006
UR  - conv_897
ER  - 
@article{
author = "Popović, Ana and Rusmirović, Jelena D. and Velicković, Zlate and Kovacević, Tihomir and Jovanović, Aleksandar and Cvijetić, Ilija and Marinković, Aleksandar D.",
year = "2021",
abstract = "In-depth kinetic and column adsorption study for diclofenac, DCF, heavy-metal and oxyanions adsorption on highly effective amino-functionalized lignin-based microsphere adsorbent (A-LMS) is examined. The A-LMS was synthesized via inverse suspension copolymerization of industrial kraft lignin with the amino containing grafting-agent (polyethylene imine), and an epoxy chloropropane cross-linker. The batch adsorption results indicated process spontaneity and feasibility of a high removal capacity: DCF(151.13) >>Cd2+(74.84)>Cr(VI)(54.20)>As(V)(53.12)>Ni2+(49.42 mg g(-1)). The quantum chemical calculated interaction energies reveal stabilization of the A-LMS/DCF complex through the electrostatics and van der Waals interactions. The results from the pseudo-second order and Weber-Morris fitting indicate a fast removal rate; thus, column tests were undertaken. The single resistance mass transfer model, i.e. the mass transfer (kfa) and diffusion coefficient (Deff), shows pore diffusional transport as a rate limiting step. The fitting of the fixed bed column data with empirical models demonstrates the influences of flow rate and adsorbate inlet concentration on the breakthrough behavior. Pore surface diffusion modeling (PSDM) expresses mass transport under applied hydraulic loading rates, calculated breakthrough point adsorption capacities: Cd2+(58.1)>Cr(VI)(54.1)>As(V)(50.9)>>Ni2+(42.9 mg g(-1))), without performing the experimentation on a full pilot-scale level, further confirms the high applicability of the A-LMS biobased adsorbent.",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Industrial and Engineering Chemistry",
title = "Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres",
pages = "314-302",
volume = "93",
doi = "10.1016/j.jiec.2020.10.006",
url = "conv_897"
}
Popović, A., Rusmirović, J. D., Velicković, Z., Kovacević, T., Jovanović, A., Cvijetić, I.,& Marinković, A. D.. (2021). Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres. in Journal of Industrial and Engineering Chemistry
Elsevier Science Inc, New York., 93, 302-314.
https://doi.org/10.1016/j.jiec.2020.10.006
conv_897
Popović A, Rusmirović JD, Velicković Z, Kovacević T, Jovanović A, Cvijetić I, Marinković AD. Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres. in Journal of Industrial and Engineering Chemistry. 2021;93:302-314.
doi:10.1016/j.jiec.2020.10.006
conv_897 .
Popović, Ana, Rusmirović, Jelena D., Velicković, Zlate, Kovacević, Tihomir, Jovanović, Aleksandar, Cvijetić, Ilija, Marinković, Aleksandar D., "Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres" in Journal of Industrial and Engineering Chemistry, 93 (2021):302-314,
https://doi.org/10.1016/j.jiec.2020.10.006 .,
conv_897 .
38
14
41