Manić, Nebojša

Link to this page

Authority KeyName Variants
f7fcf455-2c1a-4e97-9861-7f249a4bfa91
  • Manić, Nebojša (1)
Projects

Author's Bibliography

Foam glasses made from green bottle glass and sugar beet factory lime as a foaming agent

Savić, Veljko; Topalović, Vladimir; Nikolić, Jelena; Jevtić, Sanja; Manić, Nebojša; Komatina, Mirko; Matijašević, Srđan; Grujić, Snežana

(On Ching Lo, 2023)

TY  - JOUR
AU  - Savić, Veljko
AU  - Topalović, Vladimir
AU  - Nikolić, Jelena
AU  - Jevtić, Sanja
AU  - Manić, Nebojša
AU  - Komatina, Mirko
AU  - Matijašević, Srđan
AU  - Grujić, Snežana
PY  - 2023
UR  - https://ritnms.itnms.ac.rs/handle/123456789/821
AB  - Great waste production alongside limited natural resources represents huge environmental and economic problems worldwide. Sustainable waste management and industrial production can reduce pollution and gain some economic benefits. Eco-friendly thermal insulators such as foam glasses can be produced using secondary raw materials in open-loop recycling. Foam glasses were successfully produced using green bottle glass and sugar beet factory lime (SBFL), CaCO3-rich waste as a novel foaming agent. Glass powder was mixed with different amount of SBFL, uniaxially pressed at 20 MPa, and sintered at different temperatures. The influence of sintering temperature and the addition of a foaming agent was examined. Obtained samples were mechanically, thermally, and microstructurally characterized. Results showed that samples sintered at 800 °C have the best properties.  Obtained  foam glasses can be used in a variety of industries where thermal insulation, non-flammability, and non-toxic materials are required.
PB  - On Ching Lo
T2  - Heliyon
T1  - Foam glasses made from green bottle glass and sugar beet factory lime as a foaming agent
IS  - 7
VL  - 9
DO  - 10.1016/j.heliyon.2023.e17664
ER  - 
@article{
author = "Savić, Veljko and Topalović, Vladimir and Nikolić, Jelena and Jevtić, Sanja and Manić, Nebojša and Komatina, Mirko and Matijašević, Srđan and Grujić, Snežana",
year = "2023",
abstract = "Great waste production alongside limited natural resources represents huge environmental and economic problems worldwide. Sustainable waste management and industrial production can reduce pollution and gain some economic benefits. Eco-friendly thermal insulators such as foam glasses can be produced using secondary raw materials in open-loop recycling. Foam glasses were successfully produced using green bottle glass and sugar beet factory lime (SBFL), CaCO3-rich waste as a novel foaming agent. Glass powder was mixed with different amount of SBFL, uniaxially pressed at 20 MPa, and sintered at different temperatures. The influence of sintering temperature and the addition of a foaming agent was examined. Obtained samples were mechanically, thermally, and microstructurally characterized. Results showed that samples sintered at 800 °C have the best properties.  Obtained  foam glasses can be used in a variety of industries where thermal insulation, non-flammability, and non-toxic materials are required.",
publisher = "On Ching Lo",
journal = "Heliyon",
title = "Foam glasses made from green bottle glass and sugar beet factory lime as a foaming agent",
number = "7",
volume = "9",
doi = "10.1016/j.heliyon.2023.e17664"
}
Savić, V., Topalović, V., Nikolić, J., Jevtić, S., Manić, N., Komatina, M., Matijašević, S.,& Grujić, S.. (2023). Foam glasses made from green bottle glass and sugar beet factory lime as a foaming agent. in Heliyon
On Ching Lo., 9(7).
https://doi.org/10.1016/j.heliyon.2023.e17664
Savić V, Topalović V, Nikolić J, Jevtić S, Manić N, Komatina M, Matijašević S, Grujić S. Foam glasses made from green bottle glass and sugar beet factory lime as a foaming agent. in Heliyon. 2023;9(7).
doi:10.1016/j.heliyon.2023.e17664 .
Savić, Veljko, Topalović, Vladimir, Nikolić, Jelena, Jevtić, Sanja, Manić, Nebojša, Komatina, Mirko, Matijašević, Srđan, Grujić, Snežana, "Foam glasses made from green bottle glass and sugar beet factory lime as a foaming agent" in Heliyon, 9, no. 7 (2023),
https://doi.org/10.1016/j.heliyon.2023.e17664 . .