Dimitrijević, Jelena

Link to this page

Authority KeyName Variants
orcid::0000-0002-3830-2392
  • Dimitrijević, Jelena (2)
Projects

Author's Bibliography

Ability of Deep Eutectic Solvent Modified Oat Straw for Cu(II), Zn(II), and Se(IV) Ions Removal

Dimitrijević, Jelena; Jevtić, Sanja; Marinković, Aleksandar; Simić, Marija; Koprivica, Marija; Petrović, Jelena

(MDPI, 2023)

TY  - JOUR
AU  - Dimitrijević, Jelena
AU  - Jevtić, Sanja
AU  - Marinković, Aleksandar
AU  - Simić, Marija
AU  - Koprivica, Marija
AU  - Petrović, Jelena
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6463
UR  - https://ritnms.itnms.ac.rs/handle/123456789/661
AB  - In the proposed study, agro-waste biomass oat straw (OS) was considered a potential adsorbent for Cu(II), Zn(II), and Se(IV) removal from aqueous solutions. In order to obtain material with better adsorption abilities, the OS was modified by a deep eutectic solvent (DES). Structural changes caused by the applied modification route were considered by pHpzc, SEM, FTIR, and DSC/TG analysis. These methods discovered that lignocellulosic biomass degradation and material functionalization were achieved by DES treatment. Preliminary adsorption tests showed an over fourfold increase in capacity upon modification. The kinetic parameters implied that adsorption on modified material followed the pseudo-second-order kinetic model. Different isotherm models were applied to experimental data, while the Sips isotherm model best describes the equilibrium of the adsorption process on the tested modified material. According to this isotherm model, the maximum achieved adsorption capacities of Cu(II), Zn(II), and Se(IV) were 48.21, 55.06, and 87.85 mg/g, respectively. The summarized experimental results revealed that the adsorption process of selected cations on modified OS was predominantly caused by chemisorption, while, in addition to chemisorption, electrostatic forces were also responsible for Se(IV) removal. Desorption test showed that the prepared material could be reused for at least 3 cycles, with minimal efficiency loss. Briefly, this study reinforces that DES-modified agro-waste biomass could be used as a promising adsorbent for cations and oxyanions from wastewater.
PB  - MDPI
T2  - Processes
T1  - Ability of Deep Eutectic Solvent Modified Oat Straw for Cu(II), Zn(II), and Se(IV) Ions Removal
IS  - 5
SP  - 1308
VL  - 11
DO  - 10.3390/pr11051308
ER  - 
@article{
author = "Dimitrijević, Jelena and Jevtić, Sanja and Marinković, Aleksandar and Simić, Marija and Koprivica, Marija and Petrović, Jelena",
year = "2023",
abstract = "In the proposed study, agro-waste biomass oat straw (OS) was considered a potential adsorbent for Cu(II), Zn(II), and Se(IV) removal from aqueous solutions. In order to obtain material with better adsorption abilities, the OS was modified by a deep eutectic solvent (DES). Structural changes caused by the applied modification route were considered by pHpzc, SEM, FTIR, and DSC/TG analysis. These methods discovered that lignocellulosic biomass degradation and material functionalization were achieved by DES treatment. Preliminary adsorption tests showed an over fourfold increase in capacity upon modification. The kinetic parameters implied that adsorption on modified material followed the pseudo-second-order kinetic model. Different isotherm models were applied to experimental data, while the Sips isotherm model best describes the equilibrium of the adsorption process on the tested modified material. According to this isotherm model, the maximum achieved adsorption capacities of Cu(II), Zn(II), and Se(IV) were 48.21, 55.06, and 87.85 mg/g, respectively. The summarized experimental results revealed that the adsorption process of selected cations on modified OS was predominantly caused by chemisorption, while, in addition to chemisorption, electrostatic forces were also responsible for Se(IV) removal. Desorption test showed that the prepared material could be reused for at least 3 cycles, with minimal efficiency loss. Briefly, this study reinforces that DES-modified agro-waste biomass could be used as a promising adsorbent for cations and oxyanions from wastewater.",
publisher = "MDPI",
journal = "Processes",
title = "Ability of Deep Eutectic Solvent Modified Oat Straw for Cu(II), Zn(II), and Se(IV) Ions Removal",
number = "5",
pages = "1308",
volume = "11",
doi = "10.3390/pr11051308"
}
Dimitrijević, J., Jevtić, S., Marinković, A., Simić, M., Koprivica, M.,& Petrović, J.. (2023). Ability of Deep Eutectic Solvent Modified Oat Straw for Cu(II), Zn(II), and Se(IV) Ions Removal. in Processes
MDPI., 11(5), 1308.
https://doi.org/10.3390/pr11051308
Dimitrijević J, Jevtić S, Marinković A, Simić M, Koprivica M, Petrović J. Ability of Deep Eutectic Solvent Modified Oat Straw for Cu(II), Zn(II), and Se(IV) Ions Removal. in Processes. 2023;11(5):1308.
doi:10.3390/pr11051308 .
Dimitrijević, Jelena, Jevtić, Sanja, Marinković, Aleksandar, Simić, Marija, Koprivica, Marija, Petrović, Jelena, "Ability of Deep Eutectic Solvent Modified Oat Straw for Cu(II), Zn(II), and Se(IV) Ions Removal" in Processes, 11, no. 5 (2023):1308,
https://doi.org/10.3390/pr11051308 . .

Improvement of combustible characteristics of Paulownia leaves via hydrothermal carbonization

Koprivica, Marija; Petrović, Jelena; Ercegović, Marija; Simić, Marija; Milojković, Jelena; Šoštarić, Tatjana; Dimitrijević, Jelena

(Springer Heidelberg, Heidelberg, 2022)

TY  - JOUR
AU  - Koprivica, Marija
AU  - Petrović, Jelena
AU  - Ercegović, Marija
AU  - Simić, Marija
AU  - Milojković, Jelena
AU  - Šoštarić, Tatjana
AU  - Dimitrijević, Jelena
PY  - 2022
UR  - https://ritnms.itnms.ac.rs/handle/123456789/22
AB  - The Paulownia leaves (PL) was used for the first time as feedstock for the potential production of novel carbon-rich materials applying hydrothermal carbonization (HTC) technology. The HTC is one of the suitable methods for converting biomass into high-value carbonaceous products that could replace existing fossil fuels or be used for some other application. In this study, hydrochars of PL were obtained at five different temperatures (180, 200, 220, 240, and 260 degrees C), and the influence of temperature on hydrochar structures was analyzed. Physicochemical composition, structural, and combustion properties were estimated for hydrochar efficient characterization. The results showed that tested hydrochars had lower moisture, volatiles, oxygen, and sulfur content compared to PL biomass. Also, the HTC process increases carbon content and created high-energy C-C bond structures in hydrochars which improved fuel ratio (FR), energy density (ED), higher heat value (HHV), and lower heating value (LHV). However, hydrochar mass yields were significantly low, which affected the lower heating value (EY). The spectroscopic and thermal analysis confirmed the formation of new aromatic structures in hydrochars and enhancement of their thermal stability and combustion ability, respectively. Before hydrochar practice, in order to enhance their mass yields, it is necessary to further analyze the influence of the HTC parameters or hydrothermal co-carbonization with other biomass should be taken into concern. The results showed that HTC could be an efficient method to improve the combustion properties of PL biomass.
PB  - Springer Heidelberg, Heidelberg
T2  - Biomass Conversion and Biorefinery
T1  - Improvement of combustible characteristics of Paulownia leaves via hydrothermal carbonization
DO  - 10.1007/s13399-022-02619-6
UR  - conv_939
ER  - 
@article{
author = "Koprivica, Marija and Petrović, Jelena and Ercegović, Marija and Simić, Marija and Milojković, Jelena and Šoštarić, Tatjana and Dimitrijević, Jelena",
year = "2022",
abstract = "The Paulownia leaves (PL) was used for the first time as feedstock for the potential production of novel carbon-rich materials applying hydrothermal carbonization (HTC) technology. The HTC is one of the suitable methods for converting biomass into high-value carbonaceous products that could replace existing fossil fuels or be used for some other application. In this study, hydrochars of PL were obtained at five different temperatures (180, 200, 220, 240, and 260 degrees C), and the influence of temperature on hydrochar structures was analyzed. Physicochemical composition, structural, and combustion properties were estimated for hydrochar efficient characterization. The results showed that tested hydrochars had lower moisture, volatiles, oxygen, and sulfur content compared to PL biomass. Also, the HTC process increases carbon content and created high-energy C-C bond structures in hydrochars which improved fuel ratio (FR), energy density (ED), higher heat value (HHV), and lower heating value (LHV). However, hydrochar mass yields were significantly low, which affected the lower heating value (EY). The spectroscopic and thermal analysis confirmed the formation of new aromatic structures in hydrochars and enhancement of their thermal stability and combustion ability, respectively. Before hydrochar practice, in order to enhance their mass yields, it is necessary to further analyze the influence of the HTC parameters or hydrothermal co-carbonization with other biomass should be taken into concern. The results showed that HTC could be an efficient method to improve the combustion properties of PL biomass.",
publisher = "Springer Heidelberg, Heidelberg",
journal = "Biomass Conversion and Biorefinery",
title = "Improvement of combustible characteristics of Paulownia leaves via hydrothermal carbonization",
doi = "10.1007/s13399-022-02619-6",
url = "conv_939"
}
Koprivica, M., Petrović, J., Ercegović, M., Simić, M., Milojković, J., Šoštarić, T.,& Dimitrijević, J.. (2022). Improvement of combustible characteristics of Paulownia leaves via hydrothermal carbonization. in Biomass Conversion and Biorefinery
Springer Heidelberg, Heidelberg..
https://doi.org/10.1007/s13399-022-02619-6
conv_939
Koprivica M, Petrović J, Ercegović M, Simić M, Milojković J, Šoštarić T, Dimitrijević J. Improvement of combustible characteristics of Paulownia leaves via hydrothermal carbonization. in Biomass Conversion and Biorefinery. 2022;.
doi:10.1007/s13399-022-02619-6
conv_939 .
Koprivica, Marija, Petrović, Jelena, Ercegović, Marija, Simić, Marija, Milojković, Jelena, Šoštarić, Tatjana, Dimitrijević, Jelena, "Improvement of combustible characteristics of Paulownia leaves via hydrothermal carbonization" in Biomass Conversion and Biorefinery (2022),
https://doi.org/10.1007/s13399-022-02619-6 .,
conv_939 .
6
6