Porobić, Slavica

Link to this page

Authority KeyName Variants
orcid::0000-0003-2163-2261
  • Porobić, Slavica (4)

Author's Bibliography

Thermal and adsorption study of the spent mushroom substrate and its hydrochar

Kojić, Marija; Porobić, Slavica; Katnić, Đurica; Marinović-Cincović, Milena; Vujčić, Ivica; Petrović, Jelena; Simić, Marija

(Niš : RAD Centre, 2023)

TY  - CONF
AU  - Kojić, Marija
AU  - Porobić, Slavica
AU  - Katnić, Đurica
AU  - Marinović-Cincović, Milena
AU  - Vujčić, Ivica
AU  - Petrović, Jelena
AU  - Simić, Marija
PY  - 2023
UR  - https://ritnms.itnms.ac.rs/handle/123456789/829
AB  - Mushroom cultivation and consumption have been steadily increasing in recent decades, however, after mushroom cultivation, a large amount of by-products, known as spent mushroom substrate (SMS), are left behind in open dumps where about 5 kg of SMS are generated for every kilogram of mushroom (Agaricus bisporus). Around 51 million tons of SMS are produced in the world every year. Hydrothermal carbonization (HTC) is a promising technology for the conversion of SMS into a rich carbon product, hydrochar. The hydrochar was synthesized in a hydrothermal reactor at a temperature of 180 °C for a reaction time of 1 h. The characterization of the SMS and its chars was done by FTIR, SEM, and TGA analysis. The FTIR analysis showed that aromatic and oxygen-rich functional groups are dominant on the hydrochar surface. It was noticed that the hydrochar had more visible pores compared to the SMS. The porous structure and oxygen functional groups of hydrochar probably influenced the improvement of adsorption performance, since the adsorption capacity of SMS for Cd2+ ions was 28 mg L-1, while for hydrochar it was 92 mg L-1. On the other hand, the thermal kinetic analysis has shown that hydrothermally treatment upgrades the combustion behavior of hydrochar. The kinetic parameters were determined by Kissinger and Ozawa methods. The hydrochar had notably lower activation energy compared to the SMS, which means that this hydrochar requires a smaller amount of energy to start combustion. The preliminary results show that HTC effectively transforms SMS into alternative solid biofuel and eco-friendly sorbent.
PB  - Niš :  RAD Centre
C3  - ELEVENTH INTERNATIONAL CONFERENCE ON RADIATION, NATURAL SCIENCES, MEDICINE, ENGINEERING, TECHNOLOGY AND ECOLOGY (RAD 2023)
T1  - Thermal and adsorption study of the spent mushroom substrate and its hydrochar
EP  - 287
SP  - 287
DO  - 10.21175/rad.abstr.book.2023.44.1
ER  - 
@conference{
author = "Kojić, Marija and Porobić, Slavica and Katnić, Đurica and Marinović-Cincović, Milena and Vujčić, Ivica and Petrović, Jelena and Simić, Marija",
year = "2023",
abstract = "Mushroom cultivation and consumption have been steadily increasing in recent decades, however, after mushroom cultivation, a large amount of by-products, known as spent mushroom substrate (SMS), are left behind in open dumps where about 5 kg of SMS are generated for every kilogram of mushroom (Agaricus bisporus). Around 51 million tons of SMS are produced in the world every year. Hydrothermal carbonization (HTC) is a promising technology for the conversion of SMS into a rich carbon product, hydrochar. The hydrochar was synthesized in a hydrothermal reactor at a temperature of 180 °C for a reaction time of 1 h. The characterization of the SMS and its chars was done by FTIR, SEM, and TGA analysis. The FTIR analysis showed that aromatic and oxygen-rich functional groups are dominant on the hydrochar surface. It was noticed that the hydrochar had more visible pores compared to the SMS. The porous structure and oxygen functional groups of hydrochar probably influenced the improvement of adsorption performance, since the adsorption capacity of SMS for Cd2+ ions was 28 mg L-1, while for hydrochar it was 92 mg L-1. On the other hand, the thermal kinetic analysis has shown that hydrothermally treatment upgrades the combustion behavior of hydrochar. The kinetic parameters were determined by Kissinger and Ozawa methods. The hydrochar had notably lower activation energy compared to the SMS, which means that this hydrochar requires a smaller amount of energy to start combustion. The preliminary results show that HTC effectively transforms SMS into alternative solid biofuel and eco-friendly sorbent.",
publisher = "Niš :  RAD Centre",
journal = "ELEVENTH INTERNATIONAL CONFERENCE ON RADIATION, NATURAL SCIENCES, MEDICINE, ENGINEERING, TECHNOLOGY AND ECOLOGY (RAD 2023)",
title = "Thermal and adsorption study of the spent mushroom substrate and its hydrochar",
pages = "287-287",
doi = "10.21175/rad.abstr.book.2023.44.1"
}
Kojić, M., Porobić, S., Katnić, Đ., Marinović-Cincović, M., Vujčić, I., Petrović, J.,& Simić, M.. (2023). Thermal and adsorption study of the spent mushroom substrate and its hydrochar. in ELEVENTH INTERNATIONAL CONFERENCE ON RADIATION, NATURAL SCIENCES, MEDICINE, ENGINEERING, TECHNOLOGY AND ECOLOGY (RAD 2023)
Niš :  RAD Centre., 287-287.
https://doi.org/10.21175/rad.abstr.book.2023.44.1
Kojić M, Porobić S, Katnić Đ, Marinović-Cincović M, Vujčić I, Petrović J, Simić M. Thermal and adsorption study of the spent mushroom substrate and its hydrochar. in ELEVENTH INTERNATIONAL CONFERENCE ON RADIATION, NATURAL SCIENCES, MEDICINE, ENGINEERING, TECHNOLOGY AND ECOLOGY (RAD 2023). 2023;:287-287.
doi:10.21175/rad.abstr.book.2023.44.1 .
Kojić, Marija, Porobić, Slavica, Katnić, Đurica, Marinović-Cincović, Milena, Vujčić, Ivica, Petrović, Jelena, Simić, Marija, "Thermal and adsorption study of the spent mushroom substrate and its hydrochar" in ELEVENTH INTERNATIONAL CONFERENCE ON RADIATION, NATURAL SCIENCES, MEDICINE, ENGINEERING, TECHNOLOGY AND ECOLOGY (RAD 2023) (2023):287-287,
https://doi.org/10.21175/rad.abstr.book.2023.44.1 . .

The effect of gamma irradiation on the synthesis, microbiological sterility, and improvement of properties of PMMA-Al2O3 composite used in dental prosthesis manufacturing

Malisić, Vanja; Gajić, Vuk; Porobić, Slavica; Patarić, Aleksandra; Putić, Slavisa; Vujcić, Ivica

(Pergamon-Elsevier Science Ltd, Oxford, 2023)

TY  - JOUR
AU  - Malisić, Vanja
AU  - Gajić, Vuk
AU  - Porobić, Slavica
AU  - Patarić, Aleksandra
AU  - Putić, Slavisa
AU  - Vujcić, Ivica
PY  - 2023
UR  - https://ritnms.itnms.ac.rs/handle/123456789/647
AB  - Polymethyl methacrylate (PMMA) is a polymer material widely used in dental applications due to its excellent biocompatibility, stable physicochemical properties, easy manipulation, and low cost. The combination of biocompatible polymers and ceramics has great potential for the development of materials in the dental industry with improved mechanical properties. The addition of Al2O3 nanoparticles to PMMA can significantly improve its compressive and flexural strengths and wear resistance. Since this material is used in dental applications, it requires a high degree of product sterility. This can easily be achieved with gamma radiation treatment. Gamma radiation not only ensures the sterility of the product but can also affects changes in numerous material properties.The aim of this paper is to determine the influence of different doses of gamma radiation on the microbio-logical purity and changes in the mechanical and thermal properties of the PMMA/Al2O3 composite as well as the microstructural and color changes. It was found that the dose of radiation of 25 kGy is sufficient for complete sterilization of the product. This radiation dose improves the mechanical properties of the material and thermal stability. On the other hand, the dose of 25 kGy does not affect the morphology of the exposed sample and has small effect on the color change.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Radiation Physics and Chemistry
T1  - The effect of gamma irradiation on the synthesis, microbiological sterility, and improvement of properties of PMMA-Al2O3 composite used in dental prosthesis manufacturing
VL  - 207
DO  - 10.1016/j.radphyschem.2023.110846
UR  - conv_966
ER  - 
@article{
author = "Malisić, Vanja and Gajić, Vuk and Porobić, Slavica and Patarić, Aleksandra and Putić, Slavisa and Vujcić, Ivica",
year = "2023",
abstract = "Polymethyl methacrylate (PMMA) is a polymer material widely used in dental applications due to its excellent biocompatibility, stable physicochemical properties, easy manipulation, and low cost. The combination of biocompatible polymers and ceramics has great potential for the development of materials in the dental industry with improved mechanical properties. The addition of Al2O3 nanoparticles to PMMA can significantly improve its compressive and flexural strengths and wear resistance. Since this material is used in dental applications, it requires a high degree of product sterility. This can easily be achieved with gamma radiation treatment. Gamma radiation not only ensures the sterility of the product but can also affects changes in numerous material properties.The aim of this paper is to determine the influence of different doses of gamma radiation on the microbio-logical purity and changes in the mechanical and thermal properties of the PMMA/Al2O3 composite as well as the microstructural and color changes. It was found that the dose of radiation of 25 kGy is sufficient for complete sterilization of the product. This radiation dose improves the mechanical properties of the material and thermal stability. On the other hand, the dose of 25 kGy does not affect the morphology of the exposed sample and has small effect on the color change.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Radiation Physics and Chemistry",
title = "The effect of gamma irradiation on the synthesis, microbiological sterility, and improvement of properties of PMMA-Al2O3 composite used in dental prosthesis manufacturing",
volume = "207",
doi = "10.1016/j.radphyschem.2023.110846",
url = "conv_966"
}
Malisić, V., Gajić, V., Porobić, S., Patarić, A., Putić, S.,& Vujcić, I.. (2023). The effect of gamma irradiation on the synthesis, microbiological sterility, and improvement of properties of PMMA-Al2O3 composite used in dental prosthesis manufacturing. in Radiation Physics and Chemistry
Pergamon-Elsevier Science Ltd, Oxford., 207.
https://doi.org/10.1016/j.radphyschem.2023.110846
conv_966
Malisić V, Gajić V, Porobić S, Patarić A, Putić S, Vujcić I. The effect of gamma irradiation on the synthesis, microbiological sterility, and improvement of properties of PMMA-Al2O3 composite used in dental prosthesis manufacturing. in Radiation Physics and Chemistry. 2023;207.
doi:10.1016/j.radphyschem.2023.110846
conv_966 .
Malisić, Vanja, Gajić, Vuk, Porobić, Slavica, Patarić, Aleksandra, Putić, Slavisa, Vujcić, Ivica, "The effect of gamma irradiation on the synthesis, microbiological sterility, and improvement of properties of PMMA-Al2O3 composite used in dental prosthesis manufacturing" in Radiation Physics and Chemistry, 207 (2023),
https://doi.org/10.1016/j.radphyschem.2023.110846 .,
conv_966 .
5
4

Thermal kinetic analysis of the spent mushroom substrate and hydrochar

Kojić, Marija; Porobić, Slavica; Katnić, Đurica; Tadić, Julijana; Vasiljević, Bojana; Ožegović, Milica; Marinović-Cincović, Milena

(Szeged : University of Szeged, 2021)

TY  - CONF
AU  - Kojić, Marija
AU  - Porobić, Slavica
AU  - Katnić, Đurica
AU  - Tadić, Julijana
AU  - Vasiljević, Bojana
AU  - Ožegović, Milica
AU  - Marinović-Cincović, Milena
PY  - 2021
UR  - https://ritnms.itnms.ac.rs/handle/123456789/733
AB  - A carbon-rich product, hydrochar, was synthesized by hydrothermal carbonization (HTC) of spent mushroom substrate (SMS), at temperature of 260 °C. The thermal kinetic analysis has shown that hydrothermally treatment improve the combustion behavior of hydrochar. The kinetic parameters were determined by Kissinger and Ozawa methods. The SMS-260 had a significantly lower activation energy compared to the SMS, which means that this hydrochar needs a smaller amount of energy to start combustion. Generally, the preliminary results show that HTC is an effective way to transform SMS into alternative solid biofuel.
PB  - Szeged : University of Szeged
C3  - 27th  International Symposium on Analytical and Environmental Problems
T1  - Thermal kinetic analysis of the spent mushroom substrate and hydrochar
EP  - 170
SP  - 168
ER  - 
@conference{
author = "Kojić, Marija and Porobić, Slavica and Katnić, Đurica and Tadić, Julijana and Vasiljević, Bojana and Ožegović, Milica and Marinović-Cincović, Milena",
year = "2021",
abstract = "A carbon-rich product, hydrochar, was synthesized by hydrothermal carbonization (HTC) of spent mushroom substrate (SMS), at temperature of 260 °C. The thermal kinetic analysis has shown that hydrothermally treatment improve the combustion behavior of hydrochar. The kinetic parameters were determined by Kissinger and Ozawa methods. The SMS-260 had a significantly lower activation energy compared to the SMS, which means that this hydrochar needs a smaller amount of energy to start combustion. Generally, the preliminary results show that HTC is an effective way to transform SMS into alternative solid biofuel.",
publisher = "Szeged : University of Szeged",
journal = "27th  International Symposium on Analytical and Environmental Problems",
title = "Thermal kinetic analysis of the spent mushroom substrate and hydrochar",
pages = "170-168"
}
Kojić, M., Porobić, S., Katnić, Đ., Tadić, J., Vasiljević, B., Ožegović, M.,& Marinović-Cincović, M.. (2021). Thermal kinetic analysis of the spent mushroom substrate and hydrochar. in 27th  International Symposium on Analytical and Environmental Problems
Szeged : University of Szeged., 168-170.
Kojić M, Porobić S, Katnić Đ, Tadić J, Vasiljević B, Ožegović M, Marinović-Cincović M. Thermal kinetic analysis of the spent mushroom substrate and hydrochar. in 27th  International Symposium on Analytical and Environmental Problems. 2021;:168-170..
Kojić, Marija, Porobić, Slavica, Katnić, Đurica, Tadić, Julijana, Vasiljević, Bojana, Ožegović, Milica, Marinović-Cincović, Milena, "Thermal kinetic analysis of the spent mushroom substrate and hydrochar" in 27th  International Symposium on Analytical and Environmental Problems (2021):168-170.

Hydrothermal carbonization of spent mushroom substrate: Physicochemical characterization, combustion behavior, kinetic and thermodynamic study

Kojić, Marija; Petrović, Jelena; Petrović, Marija; Stanković, Slavka; Porobić, Slavica; Marinović-Cincović, Milena; Mihajlović, Marija

(Elsevier, Amsterdam, 2021)

TY  - JOUR
AU  - Kojić, Marija
AU  - Petrović, Jelena
AU  - Petrović, Marija
AU  - Stanković, Slavka
AU  - Porobić, Slavica
AU  - Marinović-Cincović, Milena
AU  - Mihajlović, Marija
PY  - 2021
UR  - https://ritnms.itnms.ac.rs/handle/123456789/599
AB  - Hydrothermal carbonization (HTC) was employed for the conversion of the spent mushroom substrate (SMS) into a carbonaceous hydrochar. The effect of operating temperature (180, 200, 220, 240, and 260 ?C) on the physicochemical, structural, and combustion properties of the obtained hydrochars was analyzed. The HTC treatment caused the increase of the higher heating value (HHV) and the lower heating value (LHV) of hydrochars for 58 % and 65 % in comparison with SMS, respectively. Analysis of morphology and functional groups showed the formation of microspheres and cracks on the hydrochar surface, which are predominantly dominated by aromatic and oxygen-rich functional groups. Thermal and kinetics analysis showed that HTC treatment improves the combustion behavior of the obtained solids. Combustion kinetic parameters of SMS and hydrochars were determined by the methods of Kissenger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO). The thermodynamic parameters and pre-exponential factors reveal a complex mechanism of SMS and hydrochars decomposition process.
PB  - Elsevier, Amsterdam
T2  - Journal of Analytical and Applied Pyrolysis
T1  - Hydrothermal carbonization of spent mushroom substrate: Physicochemical characterization, combustion behavior, kinetic and thermodynamic study
VL  - 155
DO  - 10.1016/j.jaap.2021.105028
UR  - conv_908
ER  - 
@article{
author = "Kojić, Marija and Petrović, Jelena and Petrović, Marija and Stanković, Slavka and Porobić, Slavica and Marinović-Cincović, Milena and Mihajlović, Marija",
year = "2021",
abstract = "Hydrothermal carbonization (HTC) was employed for the conversion of the spent mushroom substrate (SMS) into a carbonaceous hydrochar. The effect of operating temperature (180, 200, 220, 240, and 260 ?C) on the physicochemical, structural, and combustion properties of the obtained hydrochars was analyzed. The HTC treatment caused the increase of the higher heating value (HHV) and the lower heating value (LHV) of hydrochars for 58 % and 65 % in comparison with SMS, respectively. Analysis of morphology and functional groups showed the formation of microspheres and cracks on the hydrochar surface, which are predominantly dominated by aromatic and oxygen-rich functional groups. Thermal and kinetics analysis showed that HTC treatment improves the combustion behavior of the obtained solids. Combustion kinetic parameters of SMS and hydrochars were determined by the methods of Kissenger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO). The thermodynamic parameters and pre-exponential factors reveal a complex mechanism of SMS and hydrochars decomposition process.",
publisher = "Elsevier, Amsterdam",
journal = "Journal of Analytical and Applied Pyrolysis",
title = "Hydrothermal carbonization of spent mushroom substrate: Physicochemical characterization, combustion behavior, kinetic and thermodynamic study",
volume = "155",
doi = "10.1016/j.jaap.2021.105028",
url = "conv_908"
}
Kojić, M., Petrović, J., Petrović, M., Stanković, S., Porobić, S., Marinović-Cincović, M.,& Mihajlović, M.. (2021). Hydrothermal carbonization of spent mushroom substrate: Physicochemical characterization, combustion behavior, kinetic and thermodynamic study. in Journal of Analytical and Applied Pyrolysis
Elsevier, Amsterdam., 155.
https://doi.org/10.1016/j.jaap.2021.105028
conv_908
Kojić M, Petrović J, Petrović M, Stanković S, Porobić S, Marinović-Cincović M, Mihajlović M. Hydrothermal carbonization of spent mushroom substrate: Physicochemical characterization, combustion behavior, kinetic and thermodynamic study. in Journal of Analytical and Applied Pyrolysis. 2021;155.
doi:10.1016/j.jaap.2021.105028
conv_908 .
Kojić, Marija, Petrović, Jelena, Petrović, Marija, Stanković, Slavka, Porobić, Slavica, Marinović-Cincović, Milena, Mihajlović, Marija, "Hydrothermal carbonization of spent mushroom substrate: Physicochemical characterization, combustion behavior, kinetic and thermodynamic study" in Journal of Analytical and Applied Pyrolysis, 155 (2021),
https://doi.org/10.1016/j.jaap.2021.105028 .,
conv_908 .
27
6
29