Tamindzija, Dragana

Link to this page

Authority KeyName Variants
orcid::0000-0001-8179-8285
  • Tamindzija, Dragana (2)
Projects

Author's Bibliography

Microbially inoculated chars strongly reduce the mobility of alachlor and pentachlorobenzene in an alluvial sediment

Jevrosimov, Irina; Kragulj-Isakovski, Marijana; Apostolović, Tamara; Tamindzija, Dragana; Roncević, Srdan; Sigmund, Gabriel; Ercegović, Marija; Maletić, Snežana

(Wiley, Hoboken, 2023)

TY  - JOUR
AU  - Jevrosimov, Irina
AU  - Kragulj-Isakovski, Marijana
AU  - Apostolović, Tamara
AU  - Tamindzija, Dragana
AU  - Roncević, Srdan
AU  - Sigmund, Gabriel
AU  - Ercegović, Marija
AU  - Maletić, Snežana
PY  - 2023
UR  - https://ritnms.itnms.ac.rs/handle/123456789/21
AB  - The objective of this study was to investigate the transport behavior of two organic and persistent contaminants (alachlor and pentachlorobenzene) on Danube alluvial sediment in the absence and in the presence of microbially inoculated biochar produced at 400 degrees C and three hydrochars produced at 180, 200, and 220 degrees C. Stainless steel columns were used for the sorption experiments in nonequilibrium conditions. Obtained results were modeled using the advective-dispersive equation under nonequilibrium conditions. Transport of these compounds through the alluvial sediment column showed that the retention time increased with increasing molecular hydrophobicity. Inoculated biochar increases the retardation of both compounds: twofold for pentachlorobenzene compared with alachlor as a consequence of a higher hydrophobicity. Obtained results indicate that the highest biodegradation coefficient was observed for pentachlorobenzene (lambda = 10) in alluvial sediment with addition of an inoculated hydrochar, which is assumed to be a consequence of biosorption. Moreover, all experiments on the columns indicate that the addition of inoculated chars yields a significantly higher R-d coefficient for pentachlorobenzene than for alachlor. Bacterial counts increased in all of the column experiments, which indicates the successful adaptation of microorganisms to experimental conditions and their potential for the removal of a large number of organic pollutants. Thus, addition of inoculated chars to contaminated sediments has the potential as a remediation technique to inhibit the leaching of pollutants to groundwaters. Integr Environ Assess Manag 2022;00:1-10.
PB  - Wiley, Hoboken
T2  - Integrated Environmental Assessment and Management
T1  - Microbially inoculated chars strongly reduce the mobility of alachlor and pentachlorobenzene in an alluvial sediment
DO  - 10.1002/ieam.4691
UR  - conv_957
ER  - 
@article{
author = "Jevrosimov, Irina and Kragulj-Isakovski, Marijana and Apostolović, Tamara and Tamindzija, Dragana and Roncević, Srdan and Sigmund, Gabriel and Ercegović, Marija and Maletić, Snežana",
year = "2023",
abstract = "The objective of this study was to investigate the transport behavior of two organic and persistent contaminants (alachlor and pentachlorobenzene) on Danube alluvial sediment in the absence and in the presence of microbially inoculated biochar produced at 400 degrees C and three hydrochars produced at 180, 200, and 220 degrees C. Stainless steel columns were used for the sorption experiments in nonequilibrium conditions. Obtained results were modeled using the advective-dispersive equation under nonequilibrium conditions. Transport of these compounds through the alluvial sediment column showed that the retention time increased with increasing molecular hydrophobicity. Inoculated biochar increases the retardation of both compounds: twofold for pentachlorobenzene compared with alachlor as a consequence of a higher hydrophobicity. Obtained results indicate that the highest biodegradation coefficient was observed for pentachlorobenzene (lambda = 10) in alluvial sediment with addition of an inoculated hydrochar, which is assumed to be a consequence of biosorption. Moreover, all experiments on the columns indicate that the addition of inoculated chars yields a significantly higher R-d coefficient for pentachlorobenzene than for alachlor. Bacterial counts increased in all of the column experiments, which indicates the successful adaptation of microorganisms to experimental conditions and their potential for the removal of a large number of organic pollutants. Thus, addition of inoculated chars to contaminated sediments has the potential as a remediation technique to inhibit the leaching of pollutants to groundwaters. Integr Environ Assess Manag 2022;00:1-10.",
publisher = "Wiley, Hoboken",
journal = "Integrated Environmental Assessment and Management",
title = "Microbially inoculated chars strongly reduce the mobility of alachlor and pentachlorobenzene in an alluvial sediment",
doi = "10.1002/ieam.4691",
url = "conv_957"
}
Jevrosimov, I., Kragulj-Isakovski, M., Apostolović, T., Tamindzija, D., Roncević, S., Sigmund, G., Ercegović, M.,& Maletić, S.. (2023). Microbially inoculated chars strongly reduce the mobility of alachlor and pentachlorobenzene in an alluvial sediment. in Integrated Environmental Assessment and Management
Wiley, Hoboken..
https://doi.org/10.1002/ieam.4691
conv_957
Jevrosimov I, Kragulj-Isakovski M, Apostolović T, Tamindzija D, Roncević S, Sigmund G, Ercegović M, Maletić S. Microbially inoculated chars strongly reduce the mobility of alachlor and pentachlorobenzene in an alluvial sediment. in Integrated Environmental Assessment and Management. 2023;.
doi:10.1002/ieam.4691
conv_957 .
Jevrosimov, Irina, Kragulj-Isakovski, Marijana, Apostolović, Tamara, Tamindzija, Dragana, Roncević, Srdan, Sigmund, Gabriel, Ercegović, Marija, Maletić, Snežana, "Microbially inoculated chars strongly reduce the mobility of alachlor and pentachlorobenzene in an alluvial sediment" in Integrated Environmental Assessment and Management (2023),
https://doi.org/10.1002/ieam.4691 .,
conv_957 .
2
2

Impact of hydrochar and biochar amendments on sorption and biodegradation of organophosphorus pesticides during transport through Danube alluvial sediment

Kragulj-Isakovski, Marijana; Maletić, Snežana; Tamindzija, Dragana; Apostolović, Tamara; Petrović, Jelena; Tricković, Jelena; Agbaba, Jasmina

(Academic Press Ltd- Elsevier Science Ltd, London, 2020)

TY  - JOUR
AU  - Kragulj-Isakovski, Marijana
AU  - Maletić, Snežana
AU  - Tamindzija, Dragana
AU  - Apostolović, Tamara
AU  - Petrović, Jelena
AU  - Tricković, Jelena
AU  - Agbaba, Jasmina
PY  - 2020
UR  - https://ritnms.itnms.ac.rs/handle/123456789/535
AB  - This work investigates the transport behaviour of selected organophosphorus pesticides, OPPs (chlorpyrifos, CP; chlorpyrifos-methyl, CPM; chlorfenvinphos, CF) through Danube alluvial sediment in the presence of hydrochars and biochars. The investigated hydrochar, obtained at three different temperatures (180 degrees C, 200 degrees Cand 220 degrees C), originated from sugar beet shreds (SBS) and Miscanthusxgiganteus (MIS). Results are described by conventional advective-dispersive equation (ADE). Retardation coefficients (R d ) for all OPPs were in the range 6.2-16. Biodegradation was 4.15 and 1.80 for CPM and CP, respectively, while for CF biodegradation did not occur. The addition of carbon rich materials increases retardation of all OPPs in the range from 4 to 18 times depending on the material. Column experiment results indicated that biodegradation of OPPs occurred (up to lambda = 13). In order to confirm that biodegradation occurred in the column experiments, we isolated OPPs degrading microorganisms for the first time from the alluvial sediment. A strain capable of degrading CP and CPM was isolated and identified as Bacillus megaterium BD5 based on biochemical properties, MALDI TOF and 16S rRNA analysis (99.54% identity). The results demonstrate that hydmchars, biochars and isolated degrading bacteria may be effective agents for reducing the mobility of or removing OPPs in contaminated soils or sediments.
PB  - Academic Press Ltd- Elsevier Science Ltd, London
T2  - Journal of Environmental Management
T1  - Impact of hydrochar and biochar amendments on sorption and biodegradation of organophosphorus pesticides during transport through Danube alluvial sediment
VL  - 274
DO  - 10.1016/j.jenvman.2020.111156
UR  - conv_895
ER  - 
@article{
author = "Kragulj-Isakovski, Marijana and Maletić, Snežana and Tamindzija, Dragana and Apostolović, Tamara and Petrović, Jelena and Tricković, Jelena and Agbaba, Jasmina",
year = "2020",
abstract = "This work investigates the transport behaviour of selected organophosphorus pesticides, OPPs (chlorpyrifos, CP; chlorpyrifos-methyl, CPM; chlorfenvinphos, CF) through Danube alluvial sediment in the presence of hydrochars and biochars. The investigated hydrochar, obtained at three different temperatures (180 degrees C, 200 degrees Cand 220 degrees C), originated from sugar beet shreds (SBS) and Miscanthusxgiganteus (MIS). Results are described by conventional advective-dispersive equation (ADE). Retardation coefficients (R d ) for all OPPs were in the range 6.2-16. Biodegradation was 4.15 and 1.80 for CPM and CP, respectively, while for CF biodegradation did not occur. The addition of carbon rich materials increases retardation of all OPPs in the range from 4 to 18 times depending on the material. Column experiment results indicated that biodegradation of OPPs occurred (up to lambda = 13). In order to confirm that biodegradation occurred in the column experiments, we isolated OPPs degrading microorganisms for the first time from the alluvial sediment. A strain capable of degrading CP and CPM was isolated and identified as Bacillus megaterium BD5 based on biochemical properties, MALDI TOF and 16S rRNA analysis (99.54% identity). The results demonstrate that hydmchars, biochars and isolated degrading bacteria may be effective agents for reducing the mobility of or removing OPPs in contaminated soils or sediments.",
publisher = "Academic Press Ltd- Elsevier Science Ltd, London",
journal = "Journal of Environmental Management",
title = "Impact of hydrochar and biochar amendments on sorption and biodegradation of organophosphorus pesticides during transport through Danube alluvial sediment",
volume = "274",
doi = "10.1016/j.jenvman.2020.111156",
url = "conv_895"
}
Kragulj-Isakovski, M., Maletić, S., Tamindzija, D., Apostolović, T., Petrović, J., Tricković, J.,& Agbaba, J.. (2020). Impact of hydrochar and biochar amendments on sorption and biodegradation of organophosphorus pesticides during transport through Danube alluvial sediment. in Journal of Environmental Management
Academic Press Ltd- Elsevier Science Ltd, London., 274.
https://doi.org/10.1016/j.jenvman.2020.111156
conv_895
Kragulj-Isakovski M, Maletić S, Tamindzija D, Apostolović T, Petrović J, Tricković J, Agbaba J. Impact of hydrochar and biochar amendments on sorption and biodegradation of organophosphorus pesticides during transport through Danube alluvial sediment. in Journal of Environmental Management. 2020;274.
doi:10.1016/j.jenvman.2020.111156
conv_895 .
Kragulj-Isakovski, Marijana, Maletić, Snežana, Tamindzija, Dragana, Apostolović, Tamara, Petrović, Jelena, Tricković, Jelena, Agbaba, Jasmina, "Impact of hydrochar and biochar amendments on sorption and biodegradation of organophosphorus pesticides during transport through Danube alluvial sediment" in Journal of Environmental Management, 274 (2020),
https://doi.org/10.1016/j.jenvman.2020.111156 .,
conv_895 .
21
23