Trifković, Kata

Link to this page

Authority KeyName Variants
orcid::0000-0002-1087-1374
  • Trifković, Kata (1)
Projects

Author's Bibliography

Functionality of chitosan-halloysite nanocomposite films for sustained delivery of antibiotics: The effect of chitosan molar mass

Calija, Bojan; Milić, Jela; Milasinović, Nikola; Daković, Aleksandra; Trifković, Kata; Stojanović, Jovica; Krajišnik, Danina

(Wiley, Hoboken, 2020)

TY  - JOUR
AU  - Calija, Bojan
AU  - Milić, Jela
AU  - Milasinović, Nikola
AU  - Daković, Aleksandra
AU  - Trifković, Kata
AU  - Stojanović, Jovica
AU  - Krajišnik, Danina
PY  - 2020
UR  - https://ritnms.itnms.ac.rs/handle/123456789/550
AB  - This study was designed to investigate functionality of tetracycline-loaded chitosan-halloysite nanocomposite films, with focus on evaluating the influence of chitosan molar mass on films applicability for sustained local antibiotic delivery. The films were prepared by casting and solvent evaporation using low, medium, and high molar mass chitosan. SEM analysis revealed compact, nonporous and rough surface of the nanocomposite films due to the presence of halloysite agglomerates and tetracycline crystals. Increasing chitosan molar mass led to higher values of elongation at break (from 21.65 +/- 2.65 to 34.48 +/- 2.34%), tensile strength (from 134.8 +/- 13.21 to 246.36 +/- 14.69 MPa), and elastic modulus (from 633.79 +/- 128.37 to 716.55 +/- 60.76 MPa) of the nanocomposite films. FT-IR, XRPD, and thermal analyses confirmed molar mass dependent chitosan-halloysite interactions and improved thermal stability of the nanocomposite films in comparison with chitosan films. The nanocomposite films released tetracycline in a sustained manner, with the slowest release achieved from the films consisting of low molar mass chitosan. Chitosan molar mass was confirmed to be a functionality-related characteristic of chitosan-halloysite nanocomposite films as potential sustained-release carriers for topical delivery of antibiotics.
PB  - Wiley, Hoboken
T2  - Journal of Applied Polymer Science
T1  - Functionality of chitosan-halloysite nanocomposite films for sustained delivery of antibiotics: The effect of chitosan molar mass
IS  - 8
VL  - 137
DO  - 10.1002/app.48406
UR  - conv_858
ER  - 
@article{
author = "Calija, Bojan and Milić, Jela and Milasinović, Nikola and Daković, Aleksandra and Trifković, Kata and Stojanović, Jovica and Krajišnik, Danina",
year = "2020",
abstract = "This study was designed to investigate functionality of tetracycline-loaded chitosan-halloysite nanocomposite films, with focus on evaluating the influence of chitosan molar mass on films applicability for sustained local antibiotic delivery. The films were prepared by casting and solvent evaporation using low, medium, and high molar mass chitosan. SEM analysis revealed compact, nonporous and rough surface of the nanocomposite films due to the presence of halloysite agglomerates and tetracycline crystals. Increasing chitosan molar mass led to higher values of elongation at break (from 21.65 +/- 2.65 to 34.48 +/- 2.34%), tensile strength (from 134.8 +/- 13.21 to 246.36 +/- 14.69 MPa), and elastic modulus (from 633.79 +/- 128.37 to 716.55 +/- 60.76 MPa) of the nanocomposite films. FT-IR, XRPD, and thermal analyses confirmed molar mass dependent chitosan-halloysite interactions and improved thermal stability of the nanocomposite films in comparison with chitosan films. The nanocomposite films released tetracycline in a sustained manner, with the slowest release achieved from the films consisting of low molar mass chitosan. Chitosan molar mass was confirmed to be a functionality-related characteristic of chitosan-halloysite nanocomposite films as potential sustained-release carriers for topical delivery of antibiotics.",
publisher = "Wiley, Hoboken",
journal = "Journal of Applied Polymer Science",
title = "Functionality of chitosan-halloysite nanocomposite films for sustained delivery of antibiotics: The effect of chitosan molar mass",
number = "8",
volume = "137",
doi = "10.1002/app.48406",
url = "conv_858"
}
Calija, B., Milić, J., Milasinović, N., Daković, A., Trifković, K., Stojanović, J.,& Krajišnik, D.. (2020). Functionality of chitosan-halloysite nanocomposite films for sustained delivery of antibiotics: The effect of chitosan molar mass. in Journal of Applied Polymer Science
Wiley, Hoboken., 137(8).
https://doi.org/10.1002/app.48406
conv_858
Calija B, Milić J, Milasinović N, Daković A, Trifković K, Stojanović J, Krajišnik D. Functionality of chitosan-halloysite nanocomposite films for sustained delivery of antibiotics: The effect of chitosan molar mass. in Journal of Applied Polymer Science. 2020;137(8).
doi:10.1002/app.48406
conv_858 .
Calija, Bojan, Milić, Jela, Milasinović, Nikola, Daković, Aleksandra, Trifković, Kata, Stojanović, Jovica, Krajišnik, Danina, "Functionality of chitosan-halloysite nanocomposite films for sustained delivery of antibiotics: The effect of chitosan molar mass" in Journal of Applied Polymer Science, 137, no. 8 (2020),
https://doi.org/10.1002/app.48406 .,
conv_858 .
9
3
8