Malenović, Anđelija

Link to this page

Authority KeyName Variants
4c5d7ba1-64ed-4734-bb79-06441643664e
  • Malenović, Anđelija (6)
Projects

Author's Bibliography

Adsorption of pharmaceuticals by novel carbonaceous materials from the leaves of Ailanthus altissima (Mill.) Swingle - Case study on the adsorption of tetracycline

Stojanović, Jevrem; Zalewski, Przemysław; Otašević, Biljana; Zečević, Mira; Malenović, Anđelija; Janošević Ležaić, Aleksandra; Ranđelović, Dragana; Protić, Ana

(2023)

TY  - CONF
AU  - Stojanović, Jevrem
AU  - Zalewski, Przemysław
AU  - Otašević, Biljana
AU  - Zečević, Mira
AU  - Malenović, Anđelija
AU  - Janošević Ležaić, Aleksandra
AU  - Ranđelović, Dragana
AU  - Protić, Ana
PY  - 2023
UR  - http://analityka2023.bok-ump.pl/
UR  - https://ritnms.itnms.ac.rs/handle/123456789/1218
AB  - In the last two decades, there has been a growing awareness of the presence of pharmaceuticals in the aquatic
environment. Antibiotics are particularly alarming because their occurrence may result in increased antibiotic
resistance. Difficulties in sample preparation and removal of low concentrations of pharmaceuticals from
environmental water could be overcome by their adsorption onto novel, non-polluting, and inexpensive
materials.
In this study, biochar prepared by pirolysis of biomass at 500°C (BC500) and 800°C (BC800) and activated
carbon prepared upon treatment with ZnCl2 at 800°C (AC800) were evaluated as potential adsorbents. Ailanthus
altissima was selected as a source of raw material, leaf, because it is a widespread invasive tree that negatively
affects biodiversity. Tetracycline hydrochloride was selected as a model substance, since it is an antibiotic
widely present in environmental water. Central composite design was employed to simultaneously investigate
the effects of adsorbate solution pH, ionic strength (KCl concentration), and adsorbent mass on removal
efficiency of all three adsorbents, and to find optimal conditions for studying adsorption kinetics and equilibrium
on the most promising adsorbent. The removal efficiency and adsorbed mass were calculated from the HPLCUV
determined concentration of tetracycline post-adsorption.
Under optimal conditions (10.18 mg of adsorbent, pH 4.42, and ionic strength 165mM), AC800 showed the
highest affinity for tetracycline, i.e. 38.22% removal and adsorbed mass of 56.32 mg g-1 compared to 14.57%
and 21.48 mg g-1 (BC500) and 18.82% and 27.73 mg g-1 (BC800). Removal efficiency of AC800 was strongly
influenced by the adsorbent mass and solution pH. The kinetics study showed a rapid adsorption process
(equilibrium attained in 120 minutes), while equilibrium studies revealed a high adsorption capacity for
tetracycline (131.55 mg g-1). AC800 has been shown to be a promising novel drug adsorbent and should be
further tested for its suitability in water treatment and sample preparation.
C3  - IV Poznańska Konferencja Naukowo – Szkoleniowej - „Modern pharmaceutical and biomedical analytics in health care”
T1  - Adsorption of pharmaceuticals by novel carbonaceous materials from the leaves of Ailanthus altissima (Mill.) Swingle - Case study on the adsorption of tetracycline
EP  - 55
SP  - 55
ER  - 
@conference{
author = "Stojanović, Jevrem and Zalewski, Przemysław and Otašević, Biljana and Zečević, Mira and Malenović, Anđelija and Janošević Ležaić, Aleksandra and Ranđelović, Dragana and Protić, Ana",
year = "2023",
abstract = "In the last two decades, there has been a growing awareness of the presence of pharmaceuticals in the aquatic
environment. Antibiotics are particularly alarming because their occurrence may result in increased antibiotic
resistance. Difficulties in sample preparation and removal of low concentrations of pharmaceuticals from
environmental water could be overcome by their adsorption onto novel, non-polluting, and inexpensive
materials.
In this study, biochar prepared by pirolysis of biomass at 500°C (BC500) and 800°C (BC800) and activated
carbon prepared upon treatment with ZnCl2 at 800°C (AC800) were evaluated as potential adsorbents. Ailanthus
altissima was selected as a source of raw material, leaf, because it is a widespread invasive tree that negatively
affects biodiversity. Tetracycline hydrochloride was selected as a model substance, since it is an antibiotic
widely present in environmental water. Central composite design was employed to simultaneously investigate
the effects of adsorbate solution pH, ionic strength (KCl concentration), and adsorbent mass on removal
efficiency of all three adsorbents, and to find optimal conditions for studying adsorption kinetics and equilibrium
on the most promising adsorbent. The removal efficiency and adsorbed mass were calculated from the HPLCUV
determined concentration of tetracycline post-adsorption.
Under optimal conditions (10.18 mg of adsorbent, pH 4.42, and ionic strength 165mM), AC800 showed the
highest affinity for tetracycline, i.e. 38.22% removal and adsorbed mass of 56.32 mg g-1 compared to 14.57%
and 21.48 mg g-1 (BC500) and 18.82% and 27.73 mg g-1 (BC800). Removal efficiency of AC800 was strongly
influenced by the adsorbent mass and solution pH. The kinetics study showed a rapid adsorption process
(equilibrium attained in 120 minutes), while equilibrium studies revealed a high adsorption capacity for
tetracycline (131.55 mg g-1). AC800 has been shown to be a promising novel drug adsorbent and should be
further tested for its suitability in water treatment and sample preparation.",
journal = "IV Poznańska Konferencja Naukowo – Szkoleniowej - „Modern pharmaceutical and biomedical analytics in health care”",
title = "Adsorption of pharmaceuticals by novel carbonaceous materials from the leaves of Ailanthus altissima (Mill.) Swingle - Case study on the adsorption of tetracycline",
pages = "55-55"
}
Stojanović, J., Zalewski, P., Otašević, B., Zečević, M., Malenović, A., Janošević Ležaić, A., Ranđelović, D.,& Protić, A.. (2023). Adsorption of pharmaceuticals by novel carbonaceous materials from the leaves of Ailanthus altissima (Mill.) Swingle - Case study on the adsorption of tetracycline. in IV Poznańska Konferencja Naukowo – Szkoleniowej - „Modern pharmaceutical and biomedical analytics in health care”, 55-55.
Stojanović J, Zalewski P, Otašević B, Zečević M, Malenović A, Janošević Ležaić A, Ranđelović D, Protić A. Adsorption of pharmaceuticals by novel carbonaceous materials from the leaves of Ailanthus altissima (Mill.) Swingle - Case study on the adsorption of tetracycline. in IV Poznańska Konferencja Naukowo – Szkoleniowej - „Modern pharmaceutical and biomedical analytics in health care”. 2023;:55-55..
Stojanović, Jevrem, Zalewski, Przemysław, Otašević, Biljana, Zečević, Mira, Malenović, Anđelija, Janošević Ležaić, Aleksandra, Ranđelović, Dragana, Protić, Ana, "Adsorption of pharmaceuticals by novel carbonaceous materials from the leaves of Ailanthus altissima (Mill.) Swingle - Case study on the adsorption of tetracycline" in IV Poznańska Konferencja Naukowo – Szkoleniowej - „Modern pharmaceutical and biomedical analytics in health care” (2023):55-55.

Ibuprofen sorption and release by modified natural zeolites as prospective drug carriers

Krajišnik, Danina; Daković, Aleksandra; Malenović, Anđelija; Kragović, Milan; Milić, Jela

(Mineralogical Soc, Twickenham, 2015)

TY  - JOUR
AU  - Krajišnik, Danina
AU  - Daković, Aleksandra
AU  - Malenović, Anđelija
AU  - Kragović, Milan
AU  - Milić, Jela
PY  - 2015
UR  - https://ritnms.itnms.ac.rs/handle/123456789/348
AB  - The sorption of ibuprofen by modified natural zeolite composites at three concentration levels (10, 20 and 30 mmol/100 g) of cationic surfactants - benzalkonium chloride and cetylpyridinium chloride, in a buffer solution (pH 7.4), was studied. Characterization of the composites before and after ibuprofen sorption was performed by drug sorption and isotherm studies, zeta potential and Fourier Transform infrared spectroscopic analysis. The biopharmaceutical performance of cationic surfactant-modified zeolites as drug formulation excipients was evaluated by in vitro dissolution experiments from the composites with medium surfactant contents. The drug sorption was influenced by the surfactant type and amount used for the zeolite modification. Prolonged drug release over a period of 8 h (up to similar to 40%) was achieved with both groups of samples. The kinetic analysis showed that the drug release profiles were best fitted with the Higuchi and the Bhaskar models, indicating a combination of drug diffusion and ion exchange as the predominant release mechanisms.
PB  - Mineralogical Soc, Twickenham
T2  - Clay Minerals
T1  - Ibuprofen sorption and release by modified natural zeolites as prospective drug carriers
EP  - 22
IS  - 1
SP  - 11
VL  - 50
DO  - 10.1180/claymin.2015.050.1.02
UR  - conv_740
ER  - 
@article{
author = "Krajišnik, Danina and Daković, Aleksandra and Malenović, Anđelija and Kragović, Milan and Milić, Jela",
year = "2015",
abstract = "The sorption of ibuprofen by modified natural zeolite composites at three concentration levels (10, 20 and 30 mmol/100 g) of cationic surfactants - benzalkonium chloride and cetylpyridinium chloride, in a buffer solution (pH 7.4), was studied. Characterization of the composites before and after ibuprofen sorption was performed by drug sorption and isotherm studies, zeta potential and Fourier Transform infrared spectroscopic analysis. The biopharmaceutical performance of cationic surfactant-modified zeolites as drug formulation excipients was evaluated by in vitro dissolution experiments from the composites with medium surfactant contents. The drug sorption was influenced by the surfactant type and amount used for the zeolite modification. Prolonged drug release over a period of 8 h (up to similar to 40%) was achieved with both groups of samples. The kinetic analysis showed that the drug release profiles were best fitted with the Higuchi and the Bhaskar models, indicating a combination of drug diffusion and ion exchange as the predominant release mechanisms.",
publisher = "Mineralogical Soc, Twickenham",
journal = "Clay Minerals",
title = "Ibuprofen sorption and release by modified natural zeolites as prospective drug carriers",
pages = "22-11",
number = "1",
volume = "50",
doi = "10.1180/claymin.2015.050.1.02",
url = "conv_740"
}
Krajišnik, D., Daković, A., Malenović, A., Kragović, M.,& Milić, J.. (2015). Ibuprofen sorption and release by modified natural zeolites as prospective drug carriers. in Clay Minerals
Mineralogical Soc, Twickenham., 50(1), 11-22.
https://doi.org/10.1180/claymin.2015.050.1.02
conv_740
Krajišnik D, Daković A, Malenović A, Kragović M, Milić J. Ibuprofen sorption and release by modified natural zeolites as prospective drug carriers. in Clay Minerals. 2015;50(1):11-22.
doi:10.1180/claymin.2015.050.1.02
conv_740 .
Krajišnik, Danina, Daković, Aleksandra, Malenović, Anđelija, Kragović, Milan, Milić, Jela, "Ibuprofen sorption and release by modified natural zeolites as prospective drug carriers" in Clay Minerals, 50, no. 1 (2015):11-22,
https://doi.org/10.1180/claymin.2015.050.1.02 .,
conv_740 .
3
25
17
24

An investigation of diclofenac sodium release from cetylpyridinium chloride-modified natural zeolite as a pharmaceutical excipient

Krajišnik, Danina; Daković, Aleksandra; Malenović, Anđelija; Đekić, Ljiljana; Kragović, Milan; Dobričić, Vladimir; Milić, Jela

(Elsevier Science Bv, Amsterdam, 2013)

TY  - JOUR
AU  - Krajišnik, Danina
AU  - Daković, Aleksandra
AU  - Malenović, Anđelija
AU  - Đekić, Ljiljana
AU  - Kragović, Milan
AU  - Dobričić, Vladimir
AU  - Milić, Jela
PY  - 2013
UR  - https://ritnms.itnms.ac.rs/handle/123456789/253
AB  - In this paper, investigations of zeolite - cationic surfactant - drug composites as drug carriers were performed. For that purpose, after adsorption of the model drug - diclofenac sodium (DS) onto composites obtained by the modification of natural zeolite (NZ) with cetylpyridinium chloride (CPC) at the three different levels, i.e., 10, 20 and 30 mmol/100 g (ZCPC-10, ZCPC-20 and ZCPC-30, respectively), the release of the drug, at pH 6.8, was studied. The results of DS release from ZCPC-10 composite (DS/ZCPC-10) were compared with the DS release from corresponding physical mixture, as well as from physical mixture of NZ and DS. Characterization of the composites after adsorption of DS and the physical mixtures was realized by zeta potential measurements and by thermal analysis. Results showed that the prolonged release of DS from all the three composites, as well as from physical mixture containing ZCPC-10 and DS was achieved over a period of 8 h. The drug release from both DS/ZCPC-10 (max 55%) and corresponding physical mixture (max 38%) was remarkably lower than that from the physical mixture of NZ and DS (max 85%). The kinetic analysis for all the three composites, as well as for the physical mixture of ZCPC-10 and DS, showed that drug release profiles were best fitted with the Korsmeyer-Peppas and Bhaskar release models, indicating a combination of drug diffusion and ion exchange as the predominant release mechanisms in the dissolution medium.
PB  - Elsevier Science Bv, Amsterdam
T2  - Microporous and Mesoporous Materials
T1  - An investigation of diclofenac sodium release from cetylpyridinium chloride-modified natural zeolite as a pharmaceutical excipient
EP  - 101
SP  - 94
VL  - 167
DO  - 10.1016/j.micromeso.2012.03.033
UR  - conv_645
ER  - 
@article{
author = "Krajišnik, Danina and Daković, Aleksandra and Malenović, Anđelija and Đekić, Ljiljana and Kragović, Milan and Dobričić, Vladimir and Milić, Jela",
year = "2013",
abstract = "In this paper, investigations of zeolite - cationic surfactant - drug composites as drug carriers were performed. For that purpose, after adsorption of the model drug - diclofenac sodium (DS) onto composites obtained by the modification of natural zeolite (NZ) with cetylpyridinium chloride (CPC) at the three different levels, i.e., 10, 20 and 30 mmol/100 g (ZCPC-10, ZCPC-20 and ZCPC-30, respectively), the release of the drug, at pH 6.8, was studied. The results of DS release from ZCPC-10 composite (DS/ZCPC-10) were compared with the DS release from corresponding physical mixture, as well as from physical mixture of NZ and DS. Characterization of the composites after adsorption of DS and the physical mixtures was realized by zeta potential measurements and by thermal analysis. Results showed that the prolonged release of DS from all the three composites, as well as from physical mixture containing ZCPC-10 and DS was achieved over a period of 8 h. The drug release from both DS/ZCPC-10 (max 55%) and corresponding physical mixture (max 38%) was remarkably lower than that from the physical mixture of NZ and DS (max 85%). The kinetic analysis for all the three composites, as well as for the physical mixture of ZCPC-10 and DS, showed that drug release profiles were best fitted with the Korsmeyer-Peppas and Bhaskar release models, indicating a combination of drug diffusion and ion exchange as the predominant release mechanisms in the dissolution medium.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Microporous and Mesoporous Materials",
title = "An investigation of diclofenac sodium release from cetylpyridinium chloride-modified natural zeolite as a pharmaceutical excipient",
pages = "101-94",
volume = "167",
doi = "10.1016/j.micromeso.2012.03.033",
url = "conv_645"
}
Krajišnik, D., Daković, A., Malenović, A., Đekić, L., Kragović, M., Dobričić, V.,& Milić, J.. (2013). An investigation of diclofenac sodium release from cetylpyridinium chloride-modified natural zeolite as a pharmaceutical excipient. in Microporous and Mesoporous Materials
Elsevier Science Bv, Amsterdam., 167, 94-101.
https://doi.org/10.1016/j.micromeso.2012.03.033
conv_645
Krajišnik D, Daković A, Malenović A, Đekić L, Kragović M, Dobričić V, Milić J. An investigation of diclofenac sodium release from cetylpyridinium chloride-modified natural zeolite as a pharmaceutical excipient. in Microporous and Mesoporous Materials. 2013;167:94-101.
doi:10.1016/j.micromeso.2012.03.033
conv_645 .
Krajišnik, Danina, Daković, Aleksandra, Malenović, Anđelija, Đekić, Ljiljana, Kragović, Milan, Dobričić, Vladimir, Milić, Jela, "An investigation of diclofenac sodium release from cetylpyridinium chloride-modified natural zeolite as a pharmaceutical excipient" in Microporous and Mesoporous Materials, 167 (2013):94-101,
https://doi.org/10.1016/j.micromeso.2012.03.033 .,
conv_645 .
36
34
40

Investigation of adsorption and release of diclofenac sodium by modified zeolites composites

Krajišnik, Danina; Daković, Aleksandra; Malenović, Anđelija; Milojević-Rakić, Maja; Dondur, Vera; Radulović, Željka; Millc, Jela

(Elsevier Science Bv, Amsterdam, 2013)

TY  - JOUR
AU  - Krajišnik, Danina
AU  - Daković, Aleksandra
AU  - Malenović, Anđelija
AU  - Milojević-Rakić, Maja
AU  - Dondur, Vera
AU  - Radulović, Željka
AU  - Millc, Jela
PY  - 2013
UR  - https://ritnms.itnms.ac.rs/handle/123456789/261
AB  - Results on adsorption of diclofenac sodium (DS) by modified natural zeolite composites at three levels (10,20 and 30 mmol/100 g) of cationic surfactant-hexadecyltrimethylammonium bromide (HB), in a buffer solution, were compared. Characterization of composites before and after drug adsorption was performed by determination of electrokinetic mobility, FTIR and thermal analysis. The results indicated interactions between drug and carriers. The pharmaceutical performance of cationic surfactant-modified zeolites as drug formulation excipients was evaluated by in vitro dissolution experiments. The results were compared with the drug release from corresponding physical mixtures. Prolonged drug release over a period of 8 h (up to 30%) was achieved with both groups of samples. Furthermore, DS release reached up to 85% from physical mixtures containing drug amount closer to a therapeutic dose.
PB  - Elsevier Science Bv, Amsterdam
T2  - Applied Clay Science
T1  - Investigation of adsorption and release of diclofenac sodium by modified zeolites composites
EP  - 326
SP  - 322
VL  - 83-84
DO  - 10.1016/j.clay.2013.08.011
UR  - conv_671
ER  - 
@article{
author = "Krajišnik, Danina and Daković, Aleksandra and Malenović, Anđelija and Milojević-Rakić, Maja and Dondur, Vera and Radulović, Željka and Millc, Jela",
year = "2013",
abstract = "Results on adsorption of diclofenac sodium (DS) by modified natural zeolite composites at three levels (10,20 and 30 mmol/100 g) of cationic surfactant-hexadecyltrimethylammonium bromide (HB), in a buffer solution, were compared. Characterization of composites before and after drug adsorption was performed by determination of electrokinetic mobility, FTIR and thermal analysis. The results indicated interactions between drug and carriers. The pharmaceutical performance of cationic surfactant-modified zeolites as drug formulation excipients was evaluated by in vitro dissolution experiments. The results were compared with the drug release from corresponding physical mixtures. Prolonged drug release over a period of 8 h (up to 30%) was achieved with both groups of samples. Furthermore, DS release reached up to 85% from physical mixtures containing drug amount closer to a therapeutic dose.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Applied Clay Science",
title = "Investigation of adsorption and release of diclofenac sodium by modified zeolites composites",
pages = "326-322",
volume = "83-84",
doi = "10.1016/j.clay.2013.08.011",
url = "conv_671"
}
Krajišnik, D., Daković, A., Malenović, A., Milojević-Rakić, M., Dondur, V., Radulović, Ž.,& Millc, J.. (2013). Investigation of adsorption and release of diclofenac sodium by modified zeolites composites. in Applied Clay Science
Elsevier Science Bv, Amsterdam., 83-84, 322-326.
https://doi.org/10.1016/j.clay.2013.08.011
conv_671
Krajišnik D, Daković A, Malenović A, Milojević-Rakić M, Dondur V, Radulović Ž, Millc J. Investigation of adsorption and release of diclofenac sodium by modified zeolites composites. in Applied Clay Science. 2013;83-84:322-326.
doi:10.1016/j.clay.2013.08.011
conv_671 .
Krajišnik, Danina, Daković, Aleksandra, Malenović, Anđelija, Milojević-Rakić, Maja, Dondur, Vera, Radulović, Željka, Millc, Jela, "Investigation of adsorption and release of diclofenac sodium by modified zeolites composites" in Applied Clay Science, 83-84 (2013):322-326,
https://doi.org/10.1016/j.clay.2013.08.011 .,
conv_671 .
33
26
36

Properties of diclofenac sodium sorption onto natural zeolite modified with cetylpyridinium chloride

Krajišnik, Danina; Daković, Aleksandra; Milojević, Maja; Malenović, Anđelija; Kragović, Milan; Bajuk-Bogdanović, Danica; Dondur, Vera; Milić, Jela

(Elsevier, Amsterdam, 2011)

TY  - JOUR
AU  - Krajišnik, Danina
AU  - Daković, Aleksandra
AU  - Milojević, Maja
AU  - Malenović, Anđelija
AU  - Kragović, Milan
AU  - Bajuk-Bogdanović, Danica
AU  - Dondur, Vera
AU  - Milić, Jela
PY  - 2011
UR  - https://ritnms.itnms.ac.rs/handle/123456789/189
AB  - In this study an investigation of a model drug sorption onto cationic surfactant-modified natural zeolites as a drug formulation excipient was performed. Natural zeolite was modified with cetylpyridinium chloride in amounts equivalent to 100, 200 and 300% of its external cation-exchange capacity. The starting material and obtained organozeolites were characterized by Fourier transform infrared spectroscopy, zeta potential measurements and thermal analysis. In vitro sorption of diclofenac sodium as a model drug was studied for all surfactant/zeolite composites by means of sorption isotherm measurements in aqueous solutions (pH 7.4). The modified zeolites with three levels of surfactant coverage within the short activation time were prepared. Zeta potential measurements and thermal analysis showed that when the surfactant loading level was equal to external cation-exchange value, almost monolayer of organic phase were present at the zeolitic surface while higher amounts of surfactant produced less extended bilayers, ordered bilayers or admicelles at the zeolitic surface. Modified zeolites, obtained in this manner, were effective in diclofenac sodium sorption and the organic phase derived from adsorbed cetylpyridinium chloride was the primary sorption phase for the model drug. The Langmuir isotherm was found to describe the equilibrium sorption data well over the entire concentration range. The separate contributions of the adsorption and partition to the total sorption of DS were analyzed mathematically. Results revealed that that adsorption and partitioning of the model drug take place simultaneously.
PB  - Elsevier, Amsterdam
T2  - Colloids and Surfaces B-Biointerfaces
T1  - Properties of diclofenac sodium sorption onto natural zeolite modified with cetylpyridinium chloride
EP  - 172
IS  - 1
SP  - 165
VL  - 83
DO  - 10.1016/j.colsurfb.2010.11.024
UR  - conv_598
ER  - 
@article{
author = "Krajišnik, Danina and Daković, Aleksandra and Milojević, Maja and Malenović, Anđelija and Kragović, Milan and Bajuk-Bogdanović, Danica and Dondur, Vera and Milić, Jela",
year = "2011",
abstract = "In this study an investigation of a model drug sorption onto cationic surfactant-modified natural zeolites as a drug formulation excipient was performed. Natural zeolite was modified with cetylpyridinium chloride in amounts equivalent to 100, 200 and 300% of its external cation-exchange capacity. The starting material and obtained organozeolites were characterized by Fourier transform infrared spectroscopy, zeta potential measurements and thermal analysis. In vitro sorption of diclofenac sodium as a model drug was studied for all surfactant/zeolite composites by means of sorption isotherm measurements in aqueous solutions (pH 7.4). The modified zeolites with three levels of surfactant coverage within the short activation time were prepared. Zeta potential measurements and thermal analysis showed that when the surfactant loading level was equal to external cation-exchange value, almost monolayer of organic phase were present at the zeolitic surface while higher amounts of surfactant produced less extended bilayers, ordered bilayers or admicelles at the zeolitic surface. Modified zeolites, obtained in this manner, were effective in diclofenac sodium sorption and the organic phase derived from adsorbed cetylpyridinium chloride was the primary sorption phase for the model drug. The Langmuir isotherm was found to describe the equilibrium sorption data well over the entire concentration range. The separate contributions of the adsorption and partition to the total sorption of DS were analyzed mathematically. Results revealed that that adsorption and partitioning of the model drug take place simultaneously.",
publisher = "Elsevier, Amsterdam",
journal = "Colloids and Surfaces B-Biointerfaces",
title = "Properties of diclofenac sodium sorption onto natural zeolite modified with cetylpyridinium chloride",
pages = "172-165",
number = "1",
volume = "83",
doi = "10.1016/j.colsurfb.2010.11.024",
url = "conv_598"
}
Krajišnik, D., Daković, A., Milojević, M., Malenović, A., Kragović, M., Bajuk-Bogdanović, D., Dondur, V.,& Milić, J.. (2011). Properties of diclofenac sodium sorption onto natural zeolite modified with cetylpyridinium chloride. in Colloids and Surfaces B-Biointerfaces
Elsevier, Amsterdam., 83(1), 165-172.
https://doi.org/10.1016/j.colsurfb.2010.11.024
conv_598
Krajišnik D, Daković A, Milojević M, Malenović A, Kragović M, Bajuk-Bogdanović D, Dondur V, Milić J. Properties of diclofenac sodium sorption onto natural zeolite modified with cetylpyridinium chloride. in Colloids and Surfaces B-Biointerfaces. 2011;83(1):165-172.
doi:10.1016/j.colsurfb.2010.11.024
conv_598 .
Krajišnik, Danina, Daković, Aleksandra, Milojević, Maja, Malenović, Anđelija, Kragović, Milan, Bajuk-Bogdanović, Danica, Dondur, Vera, Milić, Jela, "Properties of diclofenac sodium sorption onto natural zeolite modified with cetylpyridinium chloride" in Colloids and Surfaces B-Biointerfaces, 83, no. 1 (2011):165-172,
https://doi.org/10.1016/j.colsurfb.2010.11.024 .,
conv_598 .
106
87
115

Cationic surfactants-modified natural zeolites: improvement of the excipients functionality

Krajišnik, Danina; Milojević, Maja; Malenović, Anđelija; Daković, Aleksandra; Ibrić, Svetlana; Savić, Snežana; Dondur, Vera; Matijašević, Srđan; Radulović, Aleksandra; Daniels, Rolf; Milić, Jela

(Taylor & Francis Ltd, Abingdon, 2010)

TY  - JOUR
AU  - Krajišnik, Danina
AU  - Milojević, Maja
AU  - Malenović, Anđelija
AU  - Daković, Aleksandra
AU  - Ibrić, Svetlana
AU  - Savić, Snežana
AU  - Dondur, Vera
AU  - Matijašević, Srđan
AU  - Radulović, Aleksandra
AU  - Daniels, Rolf
AU  - Milić, Jela
PY  - 2010
UR  - https://ritnms.itnms.ac.rs/handle/123456789/171
AB  - Context: In this study an investigation of cationic surfactants-modified natural zeolites as drug formulation excipient was performed. Objective: The aim of this work was to carry out a study of the purified natural zeolitic tuff with high amount of clinoptilolite as a potential carrier for molecules of pharmaceutical interest. Materials and methods: Two cationic surfactants (benzalkonium chloride and hexadecyltrimethylammonium bromide) were used for modification of the zeolitic surface in two levels (equal to and twice as external cation-exchange capacity of the zeolitic tuff). Prepared samples were characterized by Fourier transform infrared spectroscopy, thermogravimetric, high-performance liquid chromatography analysis, and powder flow determination. Different surfactant/zeolite composites were used for additional investigation of three model drugs: diclofenac diethylamine, diclofenac sodium, and ibuprofen by means of adsorption isotherm measurements in aqueous solutions. Results: The modified zeolites with two levels of surfactant coverage within the short activation time were prepared. Determination of flow properties showed that modification of zeolitic surface reflected on powder flow characteristics. Investigation of the model drugs adsorption on the obtained composites revealed that a variation between adsorption levels was influenced by the surfactant type and the amount present at the surface of the composites. Discussion and conclusion: In vitro release profiles of the drugs from the zeolite-surfactant-drug composites revealed that sustained drug release could be attained over a period of 8 hours. The presented results for drug uptake by surfactant-zeolite composites and the afterward drug release demonstrated the potential use of investigated modified natural zeolite as excipients for advanced excipients in drug formulations.
PB  - Taylor & Francis Ltd, Abingdon
T2  - Drug Development and Industrial Pharmacy
T1  - Cationic surfactants-modified natural zeolites: improvement of the excipients functionality
EP  - 1224
IS  - 10
SP  - 1215
VL  - 36
DO  - 10.3109/03639041003695121
UR  - conv_588
ER  - 
@article{
author = "Krajišnik, Danina and Milojević, Maja and Malenović, Anđelija and Daković, Aleksandra and Ibrić, Svetlana and Savić, Snežana and Dondur, Vera and Matijašević, Srđan and Radulović, Aleksandra and Daniels, Rolf and Milić, Jela",
year = "2010",
abstract = "Context: In this study an investigation of cationic surfactants-modified natural zeolites as drug formulation excipient was performed. Objective: The aim of this work was to carry out a study of the purified natural zeolitic tuff with high amount of clinoptilolite as a potential carrier for molecules of pharmaceutical interest. Materials and methods: Two cationic surfactants (benzalkonium chloride and hexadecyltrimethylammonium bromide) were used for modification of the zeolitic surface in two levels (equal to and twice as external cation-exchange capacity of the zeolitic tuff). Prepared samples were characterized by Fourier transform infrared spectroscopy, thermogravimetric, high-performance liquid chromatography analysis, and powder flow determination. Different surfactant/zeolite composites were used for additional investigation of three model drugs: diclofenac diethylamine, diclofenac sodium, and ibuprofen by means of adsorption isotherm measurements in aqueous solutions. Results: The modified zeolites with two levels of surfactant coverage within the short activation time were prepared. Determination of flow properties showed that modification of zeolitic surface reflected on powder flow characteristics. Investigation of the model drugs adsorption on the obtained composites revealed that a variation between adsorption levels was influenced by the surfactant type and the amount present at the surface of the composites. Discussion and conclusion: In vitro release profiles of the drugs from the zeolite-surfactant-drug composites revealed that sustained drug release could be attained over a period of 8 hours. The presented results for drug uptake by surfactant-zeolite composites and the afterward drug release demonstrated the potential use of investigated modified natural zeolite as excipients for advanced excipients in drug formulations.",
publisher = "Taylor & Francis Ltd, Abingdon",
journal = "Drug Development and Industrial Pharmacy",
title = "Cationic surfactants-modified natural zeolites: improvement of the excipients functionality",
pages = "1224-1215",
number = "10",
volume = "36",
doi = "10.3109/03639041003695121",
url = "conv_588"
}
Krajišnik, D., Milojević, M., Malenović, A., Daković, A., Ibrić, S., Savić, S., Dondur, V., Matijašević, S., Radulović, A., Daniels, R.,& Milić, J.. (2010). Cationic surfactants-modified natural zeolites: improvement of the excipients functionality. in Drug Development and Industrial Pharmacy
Taylor & Francis Ltd, Abingdon., 36(10), 1215-1224.
https://doi.org/10.3109/03639041003695121
conv_588
Krajišnik D, Milojević M, Malenović A, Daković A, Ibrić S, Savić S, Dondur V, Matijašević S, Radulović A, Daniels R, Milić J. Cationic surfactants-modified natural zeolites: improvement of the excipients functionality. in Drug Development and Industrial Pharmacy. 2010;36(10):1215-1224.
doi:10.3109/03639041003695121
conv_588 .
Krajišnik, Danina, Milojević, Maja, Malenović, Anđelija, Daković, Aleksandra, Ibrić, Svetlana, Savić, Snežana, Dondur, Vera, Matijašević, Srđan, Radulović, Aleksandra, Daniels, Rolf, Milić, Jela, "Cationic surfactants-modified natural zeolites: improvement of the excipients functionality" in Drug Development and Industrial Pharmacy, 36, no. 10 (2010):1215-1224,
https://doi.org/10.3109/03639041003695121 .,
conv_588 .
29
21
28