Barudžija, Tanja

Link to this page

Authority KeyName Variants
9857e666-8222-43d7-a69b-a60dc65cd50b
  • Barudžija, Tanja (1)

Author's Bibliography

Advanced technology for photocatalytic degradation of thiophanate-methyl: Degradation pathways, DFT calculations and embryotoxic potential

Jovanović, Aleksandar; Stevanović, Marija; Barudžija, Tanja; Cvijetić, Ilija; Lazarević, Slavica; Tomašević, Anđelka; Marinković, Aleksandar

(Elsevier B.V., 2023)

TY  - JOUR
AU  - Jovanović, Aleksandar
AU  - Stevanović, Marija
AU  - Barudžija, Tanja
AU  - Cvijetić, Ilija
AU  - Lazarević, Slavica
AU  - Tomašević, Anđelka
AU  - Marinković, Aleksandar
PY  - 2023
UR  - https://ritnms.itnms.ac.rs/handle/123456789/736
AB  - This study focuses on establishing an efficient two-step technology, which includes: (1) consecutive adsorptiondesorption,
using cellulose-based membranes, bCells, and (2) photocatalytic degradation of the fungicide
thiophanate-methyl (TPM), using synthesized Ag-P25 and Ce-P25 catalysts. The catalysts, obtained by
controlled deposition of Ag2O/Ag and CeO2 onto P25 TiO2 carrier (Degussa), were characterized using ATRFTIR,
XRPD, BET, FESEM, HRTEM, HAADF-EDS and UV–DRS techniques. In order to establish a feasible purification
technology, preconcentration of TPM was performed by adsorption, achieving 75.5 and 92.9 mg/g of
TPM removal using bCell-EpL and bCell–EpL–TA membranes, respectively, followed by efficient desorption (>
95%) that provided acceptable TPM concentration for photodegradation experiments. Under optimal conditions
(0.07 g/L of both catalysts), complete degradation of TPM (5 mg/L) occurred within 2 h, compared to 4 h for the
base TiO2 P25. Measurements of quantum yield and the results of HPLC-MS analysis, alongside DFT calculation,
assisted in understanding the TPM degradation pathways. New degradation products were detected and proposed
from HPLC–MS analysis. Embryotoxic assays, performed on zebrafish (Danio rerio), applied to estimate the
toxicity evolution of time-dependent generated TPM degradation products, showed low embryotoxic potential.
Chemical oxygen demand (26 mg O2/L) confirmed low ecotoxicological pressure of effluent water.
PB  - Elsevier B.V.
T2  - Process Safety and Environmental Protection
T1  - Advanced technology for photocatalytic degradation of thiophanate-methyl: Degradation pathways, DFT calculations and embryotoxic potential
EP  - 443
SP  - 423
VL  - 178
DO  - 10.1016/j.psep.2023.08.054
ER  - 
@article{
author = "Jovanović, Aleksandar and Stevanović, Marija and Barudžija, Tanja and Cvijetić, Ilija and Lazarević, Slavica and Tomašević, Anđelka and Marinković, Aleksandar",
year = "2023",
abstract = "This study focuses on establishing an efficient two-step technology, which includes: (1) consecutive adsorptiondesorption,
using cellulose-based membranes, bCells, and (2) photocatalytic degradation of the fungicide
thiophanate-methyl (TPM), using synthesized Ag-P25 and Ce-P25 catalysts. The catalysts, obtained by
controlled deposition of Ag2O/Ag and CeO2 onto P25 TiO2 carrier (Degussa), were characterized using ATRFTIR,
XRPD, BET, FESEM, HRTEM, HAADF-EDS and UV–DRS techniques. In order to establish a feasible purification
technology, preconcentration of TPM was performed by adsorption, achieving 75.5 and 92.9 mg/g of
TPM removal using bCell-EpL and bCell–EpL–TA membranes, respectively, followed by efficient desorption (>
95%) that provided acceptable TPM concentration for photodegradation experiments. Under optimal conditions
(0.07 g/L of both catalysts), complete degradation of TPM (5 mg/L) occurred within 2 h, compared to 4 h for the
base TiO2 P25. Measurements of quantum yield and the results of HPLC-MS analysis, alongside DFT calculation,
assisted in understanding the TPM degradation pathways. New degradation products were detected and proposed
from HPLC–MS analysis. Embryotoxic assays, performed on zebrafish (Danio rerio), applied to estimate the
toxicity evolution of time-dependent generated TPM degradation products, showed low embryotoxic potential.
Chemical oxygen demand (26 mg O2/L) confirmed low ecotoxicological pressure of effluent water.",
publisher = "Elsevier B.V.",
journal = "Process Safety and Environmental Protection",
title = "Advanced technology for photocatalytic degradation of thiophanate-methyl: Degradation pathways, DFT calculations and embryotoxic potential",
pages = "443-423",
volume = "178",
doi = "10.1016/j.psep.2023.08.054"
}
Jovanović, A., Stevanović, M., Barudžija, T., Cvijetić, I., Lazarević, S., Tomašević, A.,& Marinković, A.. (2023). Advanced technology for photocatalytic degradation of thiophanate-methyl: Degradation pathways, DFT calculations and embryotoxic potential. in Process Safety and Environmental Protection
Elsevier B.V.., 178, 423-443.
https://doi.org/10.1016/j.psep.2023.08.054
Jovanović A, Stevanović M, Barudžija T, Cvijetić I, Lazarević S, Tomašević A, Marinković A. Advanced technology for photocatalytic degradation of thiophanate-methyl: Degradation pathways, DFT calculations and embryotoxic potential. in Process Safety and Environmental Protection. 2023;178:423-443.
doi:10.1016/j.psep.2023.08.054 .
Jovanović, Aleksandar, Stevanović, Marija, Barudžija, Tanja, Cvijetić, Ilija, Lazarević, Slavica, Tomašević, Anđelka, Marinković, Aleksandar, "Advanced technology for photocatalytic degradation of thiophanate-methyl: Degradation pathways, DFT calculations and embryotoxic potential" in Process Safety and Environmental Protection, 178 (2023):423-443,
https://doi.org/10.1016/j.psep.2023.08.054 . .