Rusmirović, Jelena

Link to this page

Authority KeyName Variants
orcid::0000-0002-7151-2666
  • Rusmirović, Jelena (3)
  • Rusmirović, Jelena D. (3)
Projects
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200135 (University of Belgrade, Faculty of Technology and Metallurgy) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200325 (Military Technical Institute - MTI, Belgrade)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200023 (Institute of Technology of Nuclear and Other Mineral Row Materials - ITNMS, Belgrade) COST Action [CA17128]
Directed synthesis, structure and properties of multifunctional materials Geologic and ecotoxicologic research in identification of geopathogen zones of toxic elements in drinking water reservoirs- research into methods and procedures for reduction of biochemical anomalies
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200066 (Lola Institute, Belgrade)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200214 (Institue of Pesticides and Environmental Protection, Belgrade) Synthesis, processing and applications of nanostructured multifunctional materials with defined properties
Investigation and Optimization of the Technological and Functional Performance of the Ventilation Mill in the Thermal Power Plant Kostolac B

Author's Bibliography

Novi postupak sinteze amino i epoksi derivata taninske kiseline i lignina za proizvodnju epoksidnih smola na bioobnovljivoj osnovi

Marinković, Aleksandar; Čutović, Natalija; Jovanović, Aleksandar; Vuksanović, Marija; Rusmirović, Jelena; Batinić, Petar

(Udruga inovatora Hrvatske, 2021)


                                            

                                            
Marinković, A., Čutović, N., Jovanović, A., Vuksanović, M., Rusmirović, J.,& Batinić, P.. (2021). Novi postupak sinteze amino i epoksi derivata taninske kiseline i lignina za proizvodnju epoksidnih smola na bioobnovljivoj osnovi. in 19th International Innovation Exhibition, National and University Library in Zagreb, Croatia
Udruga inovatora Hrvatske..
Marinković A, Čutović N, Jovanović A, Vuksanović M, Rusmirović J, Batinić P. Novi postupak sinteze amino i epoksi derivata taninske kiseline i lignina za proizvodnju epoksidnih smola na bioobnovljivoj osnovi. in 19th International Innovation Exhibition, National and University Library in Zagreb, Croatia. 2021;..
Marinković, Aleksandar, Čutović, Natalija, Jovanović, Aleksandar, Vuksanović, Marija, Rusmirović, Jelena, Batinić, Petar, "Novi postupak sinteze amino i epoksi derivata taninske kiseline i lignina za proizvodnju epoksidnih smola na bioobnovljivoj osnovi" in 19th International Innovation Exhibition, National and University Library in Zagreb, Croatia (2021).

Innovative and eco-friendly technology for unsaturated polyester based gel-coat production from bio-renewable and waste materials

Marinković, Aleksandar; Milosavljević, Milutin; Rusmirović, Jelena; Kovačević, Tihomir; Kovačina, Jovanka; Milošević, Milena; Jovanović, Aleksandar; Petrović, Slobodan

(Belgrade : Belgrade Association of Inventors, 2021)


                                            

                                            
Marinković, A., Milosavljević, M., Rusmirović, J., Kovačević, T., Kovačina, J., Milošević, M., Jovanović, A.,& Petrović, S.. (2021). Innovative and eco-friendly technology for unsaturated polyester based gel-coat production from bio-renewable and waste materials. 
Belgrade : Belgrade Association of Inventors..
Marinković A, Milosavljević M, Rusmirović J, Kovačević T, Kovačina J, Milošević M, Jovanović A, Petrović S. Innovative and eco-friendly technology for unsaturated polyester based gel-coat production from bio-renewable and waste materials. 2021;..
Marinković, Aleksandar, Milosavljević, Milutin, Rusmirović, Jelena, Kovačević, Tihomir, Kovačina, Jovanka, Milošević, Milena, Jovanović, Aleksandar, Petrović, Slobodan, "Innovative and eco-friendly technology for unsaturated polyester based gel-coat production from bio-renewable and waste materials" (2021).

Removal of Chromium(VI) and Arsenic(V) from Water Solution Using Modified Lignin Microspheres

Tomašević, Anđelka; Jovanović, Aleksandar; Bošnjaković, Jovana; Stevanović, Marija; Rusmirović, Jelena; Marinković, Aleksandar

(Belgrade : Serbian Chemical Society, 2021)

TY  - CONF
AU  - Tomašević, Anđelka
AU  - Jovanović, Aleksandar
AU  - Bošnjaković, Jovana
AU  - Stevanović, Marija
AU  - Rusmirović, Jelena
AU  - Marinković, Aleksandar
PY  - 2021
UR  - https://ritnms.itnms.ac.rs/handle/123456789/662
AB  - With the development of the industry and growth of
the population, there is an increasing amount of waste,
which, due to inadequate treatment, pollutes water. The
group of the most dangerous pollutants present in water
includes heavy metals, such as As, Cd, Pb, Ni, Hg, Cr,
etc. [1]. Heavy metal ions are highly toxic and not biodegradable,
but are prone to accumulation in the body in
certain tissues and organs [2].
In recent years, natural materials, originating from
waste or renewable sources, have been increasingly
used as adsorbents in the removal of heavy metal ions
from water, due to their low cost, high prevalence and
beneficial impact on the environment [3]. Lignin, cellulose
and hemicellulose are the main polymers of wood
biomass [4]. Lignin is represented as a by-product in the
paper and pulp industry [5]. Chemical modification of
lignin was performed using acrylate derivatives (L-AC).
Modified lignin microspheres (LMS) were synthesized
by inverse suspension copolymerization using L-AC,
trimethylolpropane triacrylate (TMPTA) and methacryl
functionalized magnetite modified with MEMO silane
or with methacryloyl chloride (MACM1 or MACM2).
The procedure of inverse emulsion-suspension copolymerization
developed by Popović et al. [6] was used. In
a summary, disodium laureth sulfosuccinate (surfactant)
was stirred in water solution for 30 min at 80 °C. Afterwards,
TMPTA, L-MAC, MACM1 or MACM2 and the
initiator AIBN (1 wt. %) were added, followed by the
mixture of pore-forming solvents (tetradecanol and toluene),
stirred for 18 h at the same elevated temperature.
LMS microspheres were characterized by zero
charge point determination, FT-IR and SEM. The efficiency
of pollutants (chromium(VI) and arsenic(V)
ions) removal was analysed in terms of varying the
experimental conditions: the mass of adsorbent, the pH
of solution, the temperature of reaction and the contact
time. The best sorption was observed for the pH between
5.0 and 7.0. Synthesized bio-adsorbents showed
high efficiency, with capacities of 35.5 and 54.0 mg g-1
for the LMS adsorbents loaded with magnetite modified
using methacyl functionalized silane (LMS-1) or
methacryloyl chloride (LMS-2), respectively, obtained
according to Freundlich isothermal model. Adsorption
kinetics are described according to a pseudo-second
order model. Based on the obtained results, both adsorbents
showed excellent adsorption abilities.
Thermodynamic parameters, including the Gibbs
free energy (ΔGΘ), enthalpy (ΔHΘ) and entropy (ΔSΘ),
proved that adsorption is viable, spontaneous and endothermic
process (LMS-1) and exothermic process
(LMS-2) at temperatures between 25 and 45 °C.
PB  - Belgrade : Serbian Chemical Society
C3  - 21th European Meeting on Environmental Chemistry EMEC 21
T1  - Removal of Chromium(VI) and Arsenic(V) from Water Solution Using Modified Lignin Microspheres
EP  - 115
SP  - 115
ER  - 
@conference{
author = "Tomašević, Anđelka and Jovanović, Aleksandar and Bošnjaković, Jovana and Stevanović, Marija and Rusmirović, Jelena and Marinković, Aleksandar",
year = "2021",
abstract = "With the development of the industry and growth of
the population, there is an increasing amount of waste,
which, due to inadequate treatment, pollutes water. The
group of the most dangerous pollutants present in water
includes heavy metals, such as As, Cd, Pb, Ni, Hg, Cr,
etc. [1]. Heavy metal ions are highly toxic and not biodegradable,
but are prone to accumulation in the body in
certain tissues and organs [2].
In recent years, natural materials, originating from
waste or renewable sources, have been increasingly
used as adsorbents in the removal of heavy metal ions
from water, due to their low cost, high prevalence and
beneficial impact on the environment [3]. Lignin, cellulose
and hemicellulose are the main polymers of wood
biomass [4]. Lignin is represented as a by-product in the
paper and pulp industry [5]. Chemical modification of
lignin was performed using acrylate derivatives (L-AC).
Modified lignin microspheres (LMS) were synthesized
by inverse suspension copolymerization using L-AC,
trimethylolpropane triacrylate (TMPTA) and methacryl
functionalized magnetite modified with MEMO silane
or with methacryloyl chloride (MACM1 or MACM2).
The procedure of inverse emulsion-suspension copolymerization
developed by Popović et al. [6] was used. In
a summary, disodium laureth sulfosuccinate (surfactant)
was stirred in water solution for 30 min at 80 °C. Afterwards,
TMPTA, L-MAC, MACM1 or MACM2 and the
initiator AIBN (1 wt. %) were added, followed by the
mixture of pore-forming solvents (tetradecanol and toluene),
stirred for 18 h at the same elevated temperature.
LMS microspheres were characterized by zero
charge point determination, FT-IR and SEM. The efficiency
of pollutants (chromium(VI) and arsenic(V)
ions) removal was analysed in terms of varying the
experimental conditions: the mass of adsorbent, the pH
of solution, the temperature of reaction and the contact
time. The best sorption was observed for the pH between
5.0 and 7.0. Synthesized bio-adsorbents showed
high efficiency, with capacities of 35.5 and 54.0 mg g-1
for the LMS adsorbents loaded with magnetite modified
using methacyl functionalized silane (LMS-1) or
methacryloyl chloride (LMS-2), respectively, obtained
according to Freundlich isothermal model. Adsorption
kinetics are described according to a pseudo-second
order model. Based on the obtained results, both adsorbents
showed excellent adsorption abilities.
Thermodynamic parameters, including the Gibbs
free energy (ΔGΘ), enthalpy (ΔHΘ) and entropy (ΔSΘ),
proved that adsorption is viable, spontaneous and endothermic
process (LMS-1) and exothermic process
(LMS-2) at temperatures between 25 and 45 °C.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "21th European Meeting on Environmental Chemistry EMEC 21",
title = "Removal of Chromium(VI) and Arsenic(V) from Water Solution Using Modified Lignin Microspheres",
pages = "115-115"
}
Tomašević, A., Jovanović, A., Bošnjaković, J., Stevanović, M., Rusmirović, J.,& Marinković, A.. (2021). Removal of Chromium(VI) and Arsenic(V) from Water Solution Using Modified Lignin Microspheres. in 21th European Meeting on Environmental Chemistry EMEC 21
Belgrade : Serbian Chemical Society., 115-115.
Tomašević A, Jovanović A, Bošnjaković J, Stevanović M, Rusmirović J, Marinković A. Removal of Chromium(VI) and Arsenic(V) from Water Solution Using Modified Lignin Microspheres. in 21th European Meeting on Environmental Chemistry EMEC 21. 2021;:115-115..
Tomašević, Anđelka, Jovanović, Aleksandar, Bošnjaković, Jovana, Stevanović, Marija, Rusmirović, Jelena, Marinković, Aleksandar, "Removal of Chromium(VI) and Arsenic(V) from Water Solution Using Modified Lignin Microspheres" in 21th European Meeting on Environmental Chemistry EMEC 21 (2021):115-115.

Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres

Popović, Ana; Rusmirović, Jelena D.; Velicković, Zlate; Kovacević, Tihomir; Jovanović, Aleksandar; Cvijetić, Ilija; Marinković, Aleksandar D.

(Elsevier Science Inc, New York, 2021)

TY  - JOUR
AU  - Popović, Ana
AU  - Rusmirović, Jelena D.
AU  - Velicković, Zlate
AU  - Kovacević, Tihomir
AU  - Jovanović, Aleksandar
AU  - Cvijetić, Ilija
AU  - Marinković, Aleksandar D.
PY  - 2021
UR  - https://ritnms.itnms.ac.rs/handle/123456789/589
AB  - In-depth kinetic and column adsorption study for diclofenac, DCF, heavy-metal and oxyanions adsorption on highly effective amino-functionalized lignin-based microsphere adsorbent (A-LMS) is examined. The A-LMS was synthesized via inverse suspension copolymerization of industrial kraft lignin with the amino containing grafting-agent (polyethylene imine), and an epoxy chloropropane cross-linker. The batch adsorption results indicated process spontaneity and feasibility of a high removal capacity: DCF(151.13) >>Cd2+(74.84)>Cr(VI)(54.20)>As(V)(53.12)>Ni2+(49.42 mg g(-1)). The quantum chemical calculated interaction energies reveal stabilization of the A-LMS/DCF complex through the electrostatics and van der Waals interactions. The results from the pseudo-second order and Weber-Morris fitting indicate a fast removal rate; thus, column tests were undertaken. The single resistance mass transfer model, i.e. the mass transfer (kfa) and diffusion coefficient (Deff), shows pore diffusional transport as a rate limiting step. The fitting of the fixed bed column data with empirical models demonstrates the influences of flow rate and adsorbate inlet concentration on the breakthrough behavior. Pore surface diffusion modeling (PSDM) expresses mass transport under applied hydraulic loading rates, calculated breakthrough point adsorption capacities: Cd2+(58.1)>Cr(VI)(54.1)>As(V)(50.9)>>Ni2+(42.9 mg g(-1))), without performing the experimentation on a full pilot-scale level, further confirms the high applicability of the A-LMS biobased adsorbent.
PB  - Elsevier Science Inc, New York
T2  - Journal of Industrial and Engineering Chemistry
T1  - Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres
EP  - 314
SP  - 302
VL  - 93
DO  - 10.1016/j.jiec.2020.10.006
UR  - conv_897
ER  - 
@article{
author = "Popović, Ana and Rusmirović, Jelena D. and Velicković, Zlate and Kovacević, Tihomir and Jovanović, Aleksandar and Cvijetić, Ilija and Marinković, Aleksandar D.",
year = "2021",
abstract = "In-depth kinetic and column adsorption study for diclofenac, DCF, heavy-metal and oxyanions adsorption on highly effective amino-functionalized lignin-based microsphere adsorbent (A-LMS) is examined. The A-LMS was synthesized via inverse suspension copolymerization of industrial kraft lignin with the amino containing grafting-agent (polyethylene imine), and an epoxy chloropropane cross-linker. The batch adsorption results indicated process spontaneity and feasibility of a high removal capacity: DCF(151.13) >>Cd2+(74.84)>Cr(VI)(54.20)>As(V)(53.12)>Ni2+(49.42 mg g(-1)). The quantum chemical calculated interaction energies reveal stabilization of the A-LMS/DCF complex through the electrostatics and van der Waals interactions. The results from the pseudo-second order and Weber-Morris fitting indicate a fast removal rate; thus, column tests were undertaken. The single resistance mass transfer model, i.e. the mass transfer (kfa) and diffusion coefficient (Deff), shows pore diffusional transport as a rate limiting step. The fitting of the fixed bed column data with empirical models demonstrates the influences of flow rate and adsorbate inlet concentration on the breakthrough behavior. Pore surface diffusion modeling (PSDM) expresses mass transport under applied hydraulic loading rates, calculated breakthrough point adsorption capacities: Cd2+(58.1)>Cr(VI)(54.1)>As(V)(50.9)>>Ni2+(42.9 mg g(-1))), without performing the experimentation on a full pilot-scale level, further confirms the high applicability of the A-LMS biobased adsorbent.",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Industrial and Engineering Chemistry",
title = "Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres",
pages = "314-302",
volume = "93",
doi = "10.1016/j.jiec.2020.10.006",
url = "conv_897"
}
Popović, A., Rusmirović, J. D., Velicković, Z., Kovacević, T., Jovanović, A., Cvijetić, I.,& Marinković, A. D.. (2021). Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres. in Journal of Industrial and Engineering Chemistry
Elsevier Science Inc, New York., 93, 302-314.
https://doi.org/10.1016/j.jiec.2020.10.006
conv_897
Popović A, Rusmirović JD, Velicković Z, Kovacević T, Jovanović A, Cvijetić I, Marinković AD. Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres. in Journal of Industrial and Engineering Chemistry. 2021;93:302-314.
doi:10.1016/j.jiec.2020.10.006
conv_897 .
Popović, Ana, Rusmirović, Jelena D., Velicković, Zlate, Kovacević, Tihomir, Jovanović, Aleksandar, Cvijetić, Ilija, Marinković, Aleksandar D., "Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres" in Journal of Industrial and Engineering Chemistry, 93 (2021):302-314,
https://doi.org/10.1016/j.jiec.2020.10.006 .,
conv_897 .
38
14
41

Vermiculite enriched by Fe(III) oxides as a novel adsorbent for toxic metals removal

Bugarčić, Mladen; Lopičić, Zorica; Šoštarić, Tatjana; Marinković, Aleksandar D.; Rusmirović, Jelena D.; Milošević, Dragana; Milivojević, Milan

(Elsevier Sci Ltd, Oxford, 2021)

TY  - JOUR
AU  - Bugarčić, Mladen
AU  - Lopičić, Zorica
AU  - Šoštarić, Tatjana
AU  - Marinković, Aleksandar D.
AU  - Rusmirović, Jelena D.
AU  - Milošević, Dragana
AU  - Milivojević, Milan
PY  - 2021
UR  - https://ritnms.itnms.ac.rs/handle/123456789/570
AB  - Expanded vermiculite (EV) was modified by deposition of different spinel ferrite composites on the outer surface of EV 2:1 layers in order to improve its adsorptive properties. Modifications were made by deposition of: magnetite, manganese ferrite, cobalt ferrite and chromium oxide/hematite. The characterization of modified materials was performed by: scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) methodology, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), magnetization measurements, as well as determination of cation exchange capacity (CEC) and pH point of zero charge (pHPZC). Obtained samples were used as adsorbents for Pb2+, Ni(2+)and Cd2+ ions from an aqueous solution in a batch system. Results showed that adsorption capacity was strongly dependent on physical and chemical changes induced by specific chemical modification. Hydrothermally produced manganese and cobalt ferrites caused significant surface changes and altered the interlayer cation balance. Among the others, EV-Mn/Co-ferrite(s) samples possessed the highest adsorption capacity towards Ni2+ (33.06 mg g(-1)), along with an increase of the CEC. Freundlich's adsorption isotherm model provided the best fit of obtained experimental data, while kinetic studies showed that the adsorption rate follows the pseudo second-order model, implying heterogeneous adsorbents surface. Thermodynamic and kinetic parameters indicated that the mechanism of cations removal efficacy was dominantly followed by the ion exchange. This study confirmed that doped ferrites, produced by solvothermal method, improve surface properties of EV and increase adsorption potentials towards heavy metals.
PB  - Elsevier Sci Ltd, Oxford
T2  - Journal of Environmental Chemical Engineering
T1  - Vermiculite enriched by Fe(III) oxides as a novel adsorbent for toxic metals removal
IS  - 5
VL  - 9
DO  - 10.1016/j.jece.2021.106020
UR  - conv_919
ER  - 
@article{
author = "Bugarčić, Mladen and Lopičić, Zorica and Šoštarić, Tatjana and Marinković, Aleksandar D. and Rusmirović, Jelena D. and Milošević, Dragana and Milivojević, Milan",
year = "2021",
abstract = "Expanded vermiculite (EV) was modified by deposition of different spinel ferrite composites on the outer surface of EV 2:1 layers in order to improve its adsorptive properties. Modifications were made by deposition of: magnetite, manganese ferrite, cobalt ferrite and chromium oxide/hematite. The characterization of modified materials was performed by: scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) methodology, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), magnetization measurements, as well as determination of cation exchange capacity (CEC) and pH point of zero charge (pHPZC). Obtained samples were used as adsorbents for Pb2+, Ni(2+)and Cd2+ ions from an aqueous solution in a batch system. Results showed that adsorption capacity was strongly dependent on physical and chemical changes induced by specific chemical modification. Hydrothermally produced manganese and cobalt ferrites caused significant surface changes and altered the interlayer cation balance. Among the others, EV-Mn/Co-ferrite(s) samples possessed the highest adsorption capacity towards Ni2+ (33.06 mg g(-1)), along with an increase of the CEC. Freundlich's adsorption isotherm model provided the best fit of obtained experimental data, while kinetic studies showed that the adsorption rate follows the pseudo second-order model, implying heterogeneous adsorbents surface. Thermodynamic and kinetic parameters indicated that the mechanism of cations removal efficacy was dominantly followed by the ion exchange. This study confirmed that doped ferrites, produced by solvothermal method, improve surface properties of EV and increase adsorption potentials towards heavy metals.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Journal of Environmental Chemical Engineering",
title = "Vermiculite enriched by Fe(III) oxides as a novel adsorbent for toxic metals removal",
number = "5",
volume = "9",
doi = "10.1016/j.jece.2021.106020",
url = "conv_919"
}
Bugarčić, M., Lopičić, Z., Šoštarić, T., Marinković, A. D., Rusmirović, J. D., Milošević, D.,& Milivojević, M.. (2021). Vermiculite enriched by Fe(III) oxides as a novel adsorbent for toxic metals removal. in Journal of Environmental Chemical Engineering
Elsevier Sci Ltd, Oxford., 9(5).
https://doi.org/10.1016/j.jece.2021.106020
conv_919
Bugarčić M, Lopičić Z, Šoštarić T, Marinković AD, Rusmirović JD, Milošević D, Milivojević M. Vermiculite enriched by Fe(III) oxides as a novel adsorbent for toxic metals removal. in Journal of Environmental Chemical Engineering. 2021;9(5).
doi:10.1016/j.jece.2021.106020
conv_919 .
Bugarčić, Mladen, Lopičić, Zorica, Šoštarić, Tatjana, Marinković, Aleksandar D., Rusmirović, Jelena D., Milošević, Dragana, Milivojević, Milan, "Vermiculite enriched by Fe(III) oxides as a novel adsorbent for toxic metals removal" in Journal of Environmental Chemical Engineering, 9, no. 5 (2021),
https://doi.org/10.1016/j.jece.2021.106020 .,
conv_919 .
10
11

Primena modifikovanih tanina u antikorozionim alkidnim premazima

Milošević, Milena D.; Daničić, Dunja D.; Kovačina, Jovanka N.; Bugarčić, Mladen; Rusmirović, Jelena D.; Kovacević, Tihomir; Marinković, Aleksandar D.

(Inženjersko društvo za koroziju, Beograd, 2019)

TY  - JOUR
AU  - Milošević, Milena D.
AU  - Daničić, Dunja D.
AU  - Kovačina, Jovanka N.
AU  - Bugarčić, Mladen
AU  - Rusmirović, Jelena D.
AU  - Kovacević, Tihomir
AU  - Marinković, Aleksandar D.
PY  - 2019
UR  - https://ritnms.itnms.ac.rs/handle/123456789/499
AB  - U ovom radu prikazana je sinteza antikorozionih aditiva na bazi hemijski modifikovanog tanina i njihova primena u alkidnim premazima u cilju poboljšanja antikorozionih svojstava. Prikazane su dve metode modifikacije tanina: direktna modifikacija tanina primenom amonijum-hidroksida, amonijum-hidroksid/amonijum-hlorid pufera ili dietilentriamina (DETA); i dvostepena modifikacija tanina koja u prvom stupnju uključuje modifikaciju epihlorhidrinom sa ciljem da se dobije tannin sa epoksi terminiranim funkcionalnim grupama, ET, i modifikaciju ET tanina sa heteroaromatičnim aminima ili masnim kiselinama izolovanim iz lanenog ulja (LFA) u drugom stupnju. Sintetisani antikorozioni aditivi su okarakterisani primenom ATR-FTIR, 1H i 13C NMR spektroskopija, i elementalnom analizom. Sadržaj epoksi, amino, hidroksilnih i karboksilnih grupa i vrednost jodnog broja sintetisanih aditiva određen je prema standardnim metodama. Alkidni premazi koji sadrže antikorozione aditive na bazi modifikovanog tanina ispitani su prema standardnoj SRPS EN ISO 4628 metodi. Antikorozivni alkidni premazi na bazi modfikovanih tanina pokazali su poboljšane antikorozione karakteristike i adheziju u poređenju sa alkidnim premazom na bazi cink-fosfata. Alkidni premazi koji sadrže dvostepeno modifikovani tanin sa LFA i 2-amino-5-merkapto-1,3,4-tiadiazolom pokazali su najbolje antikorozione karakteristike.
AB  - The study of the synthesis of anticorrosive inhibitors, based on chemically modified tannins, and their use in alkyd based coatings to improve anticorrosive properties is presented in this work. Two methods of tannin modification were applied: direct method using ammonium hydroxide, ammonium hydroxide/ammonium chloride buffer or diethylenetriamine (DETA); and a two-step method including tannin modification with epichlorohydrin (ECH) in first step to produce epoxy modified tannin, ET, and further modification with heteroaromatic amines or linseed oil fatty acids (LFA) in second step. The obtained anticorrosive additives were characterized using ATR-FTIR, 1H and 13C NMR spectroscopies and elemental analysis. Epoxy, amino, hydroxyl, acid and iodine values of the synthesized inhibitors were determined according to standard methods. The prepared alkyd coating with tannin inhibitors was tested according to standard SRPS EN ISO 4628 method. Anticorrosive coating containing modified tannin based additive showed increased anticorrosive properties, good adhesion and coverage comparing to the coating with zinc phosphate additive. The alkyd coating films based on ET-LFA and ET modified with 2-amino-5-mercapto-1,3,4-thiadiazole showed best anticorrosive results.
PB  - Inženjersko društvo za koroziju, Beograd
T2  - Zaštita materijala
T1  - Primena modifikovanih tanina u antikorozionim alkidnim premazima
T1  - Modified tannins for alkyd based anticorrosive coatings
EP  - 95
IS  - 1
SP  - 81
VL  - 60
DO  - 10.5937/zasmat1901081M
UR  - conv_158
ER  - 
@article{
author = "Milošević, Milena D. and Daničić, Dunja D. and Kovačina, Jovanka N. and Bugarčić, Mladen and Rusmirović, Jelena D. and Kovacević, Tihomir and Marinković, Aleksandar D.",
year = "2019",
abstract = "U ovom radu prikazana je sinteza antikorozionih aditiva na bazi hemijski modifikovanog tanina i njihova primena u alkidnim premazima u cilju poboljšanja antikorozionih svojstava. Prikazane su dve metode modifikacije tanina: direktna modifikacija tanina primenom amonijum-hidroksida, amonijum-hidroksid/amonijum-hlorid pufera ili dietilentriamina (DETA); i dvostepena modifikacija tanina koja u prvom stupnju uključuje modifikaciju epihlorhidrinom sa ciljem da se dobije tannin sa epoksi terminiranim funkcionalnim grupama, ET, i modifikaciju ET tanina sa heteroaromatičnim aminima ili masnim kiselinama izolovanim iz lanenog ulja (LFA) u drugom stupnju. Sintetisani antikorozioni aditivi su okarakterisani primenom ATR-FTIR, 1H i 13C NMR spektroskopija, i elementalnom analizom. Sadržaj epoksi, amino, hidroksilnih i karboksilnih grupa i vrednost jodnog broja sintetisanih aditiva određen je prema standardnim metodama. Alkidni premazi koji sadrže antikorozione aditive na bazi modifikovanog tanina ispitani su prema standardnoj SRPS EN ISO 4628 metodi. Antikorozivni alkidni premazi na bazi modfikovanih tanina pokazali su poboljšane antikorozione karakteristike i adheziju u poređenju sa alkidnim premazom na bazi cink-fosfata. Alkidni premazi koji sadrže dvostepeno modifikovani tanin sa LFA i 2-amino-5-merkapto-1,3,4-tiadiazolom pokazali su najbolje antikorozione karakteristike., The study of the synthesis of anticorrosive inhibitors, based on chemically modified tannins, and their use in alkyd based coatings to improve anticorrosive properties is presented in this work. Two methods of tannin modification were applied: direct method using ammonium hydroxide, ammonium hydroxide/ammonium chloride buffer or diethylenetriamine (DETA); and a two-step method including tannin modification with epichlorohydrin (ECH) in first step to produce epoxy modified tannin, ET, and further modification with heteroaromatic amines or linseed oil fatty acids (LFA) in second step. The obtained anticorrosive additives were characterized using ATR-FTIR, 1H and 13C NMR spectroscopies and elemental analysis. Epoxy, amino, hydroxyl, acid and iodine values of the synthesized inhibitors were determined according to standard methods. The prepared alkyd coating with tannin inhibitors was tested according to standard SRPS EN ISO 4628 method. Anticorrosive coating containing modified tannin based additive showed increased anticorrosive properties, good adhesion and coverage comparing to the coating with zinc phosphate additive. The alkyd coating films based on ET-LFA and ET modified with 2-amino-5-mercapto-1,3,4-thiadiazole showed best anticorrosive results.",
publisher = "Inženjersko društvo za koroziju, Beograd",
journal = "Zaštita materijala",
title = "Primena modifikovanih tanina u antikorozionim alkidnim premazima, Modified tannins for alkyd based anticorrosive coatings",
pages = "95-81",
number = "1",
volume = "60",
doi = "10.5937/zasmat1901081M",
url = "conv_158"
}
Milošević, M. D., Daničić, D. D., Kovačina, J. N., Bugarčić, M., Rusmirović, J. D., Kovacević, T.,& Marinković, A. D.. (2019). Primena modifikovanih tanina u antikorozionim alkidnim premazima. in Zaštita materijala
Inženjersko društvo za koroziju, Beograd., 60(1), 81-95.
https://doi.org/10.5937/zasmat1901081M
conv_158
Milošević MD, Daničić DD, Kovačina JN, Bugarčić M, Rusmirović JD, Kovacević T, Marinković AD. Primena modifikovanih tanina u antikorozionim alkidnim premazima. in Zaštita materijala. 2019;60(1):81-95.
doi:10.5937/zasmat1901081M
conv_158 .
Milošević, Milena D., Daničić, Dunja D., Kovačina, Jovanka N., Bugarčić, Mladen, Rusmirović, Jelena D., Kovacević, Tihomir, Marinković, Aleksandar D., "Primena modifikovanih tanina u antikorozionim alkidnim premazima" in Zaštita materijala, 60, no. 1 (2019):81-95,
https://doi.org/10.5937/zasmat1901081M .,
conv_158 .
2
2