

BOOK OF ABSTRACTS

5th International Caparica Conference on Pollutant Toxic Ions and Molecules 2023

> Hotel TRYP Lisboa Caparica Mar Caparica | Portugal

PTIM 2023

5th International Caparica Conference on Pollutant Toxic Ions and Molecules 2023

ISBN: 978-989-35197-0-7

Author: Carlos Lodeiro

Co-author(s): José Luis Capelo-Martínez; Hugo M. Santos, and Elisabete Oliveira

Printed by: PROTEOMASS Scientific Society (Portugal)

Printage: 25 Copies

Electronic support: 250 PDF/ PDF/A

Design and Elaboration: Frederico Duarte and Hugo M. Santos

Webpage designer: Tomás Miranda **Poster designer:** Tomás Miranda

Caparica – Portugal, 2023

©2023 BIOSCOPE Research Group | PROTEOMASS Scientific Society

BOOK OF ABSTRACTS

5th International Caparica Conference on Pollutant Toxic Ions and Molecules 2023

Hotel TRYP Lisboa Caparica Mar Caparica | Portugal

06th – 09th November 2023

INDEX

WELCOME 5 th PTIM 2023	11
COMMITTEES	
SCIENTIFIC COMMITTEE	21
LOCAL ORGANIZING COMMITTEE	23
CONFERENCE SECRETARIAT	25
SPONSORS AND PARTNERS	26
GENERAL INFORMATION	30
TYPE OF PRESENTATIONS	33
CONFERENCE VENUE	35
LOCAL INFORMATION	
SOCIAL PROGRAM	40
AWARDS	44
BIOSKETCHES	46
PLENARY LECTURES	74
KEYNOTE PRESENTATIONS	82
KPRK TALKS	100
ORAL COMMUNICATIONS	102
SHOTGUN COMMUNICATIONS	140
POSTER COMMUNICATIONS	168
ALITHOR INDEX	102

INDEX OF PRESENTATIONS

PLEN	ARY LECTURES	74
PL.1	The role of metals in biology and the interaction with gut and milk microbiota by combining or	nic and
meta-on	nic methodologies	75
PL.2	Development of a Multifunctional Photoelectrochemical System for Water and Wastewater Tre	atment
toward S	Sustainability and Carbon Neutrality	76
PL.3	Emerging Contaminants in the Wastewater-Soil-Plant Continuum	77
PL.4	Pollution Control in Soil and Water	78
PL.5	Bioindicators. clarity, consistency, accountability and examples	79
PL.6	Uncoupling transport of cadmium and beneficial micronutrients: towards creating healthy foods	80
PL.7	Sewage Protein-Information Mining: Discovery of Large Biomolecules as Biomarkers of Populati	on and
Industri	al Activities	81
KEYN	OTE PRESENTATIONS	82
KN.1	Fish as bioindicators for metal pollution following acid mine drainage in a river system in South Af	rica 83
KN.2	Biomonitoring of dialkylphosphates in maternal urine and amniotic fluid to assess expos	
organop	phospahate pesticides in a cohort from the population of Sevilla (Spain)	
KN.3	Environmental contaminants of emerging concern in South African wastewater and surface water.	
study of	furban and rural areas	
KN.4	Dermal bioaccessibility and permeation of metal(loid)s through synthetic skin	
KN.5	Immobilized enzymes – biocatalysts of the future?	87
KN.6	The Effects of Oxidation Processes on Microplastics in Water	
KN.7	Influence of fuel, food type and route of exposure on inhalation risk to PAHs and BTEX emission fro	
	89	•••••
KN.8	Establishing functional relationships between the chronic human exposure to toxic metal spec	ies and
diseases	5	90
KN.9	Temporal-spatial occurrence and distribution of multiple antibiotics in suspended particulate ma	tters: A
case stu	dy in the Lower reaches of Yellow River (Jinan Section)	91
KN.10	The underlying cytotoxicity mechanisms of biomass burning aerosols on fatty liver disease	92
KN.11	Understanding high levels of hydroxyl dicarboxylic acids (OHDCA) observed in China's outflows	93
KN.12	Drivers of the accumulation of mercury and organochlorine pollutants in Mediterranean lean f	ish and
dietary s	significance	94
KN.13	Cadmium in inexpensive jewelry: A dangerous and unnecessary health and environmental hazard.	95
KN.14	Is phytoremediation of soils with industrial crops a sustainable solution?	96
KN.15	Advancing Sustainable Antibacterial Biopolymers for Eco-Friendly Packaging Solutions	97
KN.16	Pollutants in Aging and Neurodegeneration. An analytical view	98

KPRK	TALKS100
KPRK.1	Contaminants of Emerging Concern: What are they and why do we care?101
ORAL	COMMUNICATIONS
OA.1	Environmental and technical aspects of using synthetic and natural hybrid materials containing mixtures
of metal	oxides for arsenic removal from water
OA.2	An analytical framework for the concept of green ports and GHG emission reduction cell through the QHM
model	104
OA.3	Selective and simultaneous determination of parabens and their main hydroxy metabolites in maternal
urine and	d amniotic fluid using Electromembrane Extraction (EME) followed by LC-ESI-QTOF-MS105
OA.4	A complete toxicological study of tropane alkaloids: From food digestion to biological metabolization 106
OA.5	"Assessment occurrence of emerging per- and polyfluoroalkyl substances (PFAS) in the EPAL and AdVT
water su	pply system to address the new EU regulation"107
OA.6	Per- and polyfluorinated substances (PFAS) neurotoxicity and potential public health implications 108
OA.7	The impact of natural insecticides used in organic farming on soil bacteria109
OA.8	Seed endophyte enhanced host plant Cd tolerance through remodeling the microbiome of root and
rhizosph	ere soil110
OA.9	Ca-oxalate as non-conventional carbon mineralization product via carbon dioxide / ascorbic acid reaction
	111
OA.10	Presence of nano-sized mercury-containing particles in seafoods, and an estimate of dietary exposure
	112
OA.11	Characterization of microplastics in water for human consumption by Micro-FTIR: Lisbon case study113
OA.12	Vadose zone monitoring as a key to water resources protection from pollution hazard114
OA.13	Biopesticides - way to sustanaible agriculture?
OA.14	Determining rear earth elements in road dust from the vicinity of coal fired thermal power plants 116
OA.15	Colonization dynamics of metal-sulphide mine tailings
OA.16	Doped TiO2 nanocoating textile fabric by physical vapour depositon- pulsed magnetron sputtering
photoca	talytic application118
OB.1	Phytoremediation of trace metals from potentially contaminated soil and water samples collected in South
Africa ar	nd their risk assessment to human health
OB.2	Differences and similarities in the effects of superfine Ag, Au and TiO2 nanoparticles on red blood cells, in
vitro stu	dies
OB.3	Analysis of metals in serum from lung cancer (LC) and chronic obstructive pulmonary disease (COPD)
patients	by inductively coupled plasma mass spectrometry. Possible associations between LC and COPD121
OB.4	TiO2-based photocatalyst – the phenomenon of combined visible light photocatalytic activity and "dark
catalysis	

INDEX OF PRESENTATIONS

OB.5	Bismuth-doped Mo-Zn photocatalyst for the efficient degradation of emerging pollutants by	supporting
peroxym	nonosulfate oxidation	123
OB.6	A novel methodology to mitigate acrylamide in cookies using dietary fibres	124
OB.7	Diclofenac effects in Mus musculus mice based on a metabolomic study. Interaction with se	elenium and
the impo	act on serum selenoproteome	125
OB.8	Characterisation of highly soluble U(VI)-PBTC complexes	126
OB.9	A Coordination Study of Eu–HEDP complexes in aqueous solution	127
OB.10	Effects of Polyethylene fluorescent fabrics powder on Arabidopsis thaliana growth	128
OB.11	Filed study on the uptake, accumulation and risk assessment of perchlorate in a soil-chard/spin	ach system:
Impact o	of agronomic practices and fertilization	129
OB.12	Adsorption of antibiotics on magnetite-pine bark from municipal secondary effluent	130
OB.13	Investigating the optimal growth conditions of the fern Pteris vittata for efficient phytofiltration	on of arsenic
from dri	inking water	131
OB.14	Arsenic accumulation in Pteris vittata: Time course, distribution, and arsenic-related gene e.	xpression in
fronds a	and whole plantlets	132
OB.15	Substantial Improvement in Mercury Quantification in Airborne Particulate Matter Samp	oles using a
Preservo	ation Agent	133
OB.16	Identification of the impact of air pollution factors on RSV morbidity using non-linear statis	tical models
DLNM a	and GRM in long period	134
OB.17	Heavy metal distribution and associated ecological risk assessment of road-side dust at pro	ominent bus
stands ir	n Gaya, Bihar (India)	135
OB.18	Metals and metalloids in macrophytes of an acid mine drainage impacted river system in S	outh Africa:
aspects	of bioindication and phytoremediation	136
OB.19	Bacterial strain Labrys portucalensis F11 degrades the neonicotinoid insecticide thiamet	hoxam and
removes	s toxicity	137
OB.20	Plants as model for the evaluation of genotoxic damage caused by environmental pollutants	138
OB.21	Digestion of plastics using in vitro human gastrointestinal tract and their potential to adso	rb emerging
organic _l	pollutants	139
SHOT	GUN COMMUNICATIONS	140
SG.1	Chiral thyroid hormones in human milk: hollow-fiber liquid phase microextraction followed by a	ın analytical
multipla	itform based on IMMS, UHPLC-QTOF and HPLC-ICP-QQQ-MS	141
SG.2	Detecting toxic molecules and ions, ranging from cyanide to mercury, using a solvatochromic of	
dansyl.		
SG.3	Post-mortem brain metallomics of Alzheimer´s disease human putamen, caudate, amygdala	
cortex		
SG.4	Characteristics of natural zeolites of Kazakhstan and Georgia and their thermally treated mod	
		111

SG.5 SG.6	Influence of the composition of the anticorrosive composition on the value of adhesion to steel 145 Antibacterial dual-effect naphthalimide-based probe for heavy metal detection in aqueous environments			
	146			
SG.7	Synthesis of the novel, highly hydrophobic task-specific Ionic Liquid [TOPP]2[PAM] and first results for the			
selective	e extraction of Rare Earth Elements147			
SG.8	Obtaining composite polymer materials to improve rheological properties of drilling fluids148			
SG.9	The influence of air pollution on the risk of developing bronchial asthma in children149			
SG.10 waters	Preparation and application of Magnetic Carbon Nanotubes to the preconcentration of Cd in natural			
SG.11	Mesoporous Silica Coated Silver Nanoparticles as Antibacterial Material for Health and Food Applications			
	151			
SG.12	Rapid "in situ" solid state detection of liquid ecstasy (GHB) in beverages			
SG.13	Exposure to indoor air pollutants and health consequences of people living in buildings with different types			
of heati	ng			
	153			
SG.14	Scanning Electron Microscopy and HyperSpectral Imaging in Man Made Vitreous Fibers Characterization			
	154			
SG.15	Comparison of ATOMIC and molecular approaches for the determination of mice plasma selenoproteome			
	155			
SG.16	Physiochemical drivers of Hg methylation in polluted forest soils in Czech Republic156			
SG.17	Impact of Eu(III), Am(III) and U(VI) on human and rat kidney cells in vitro157			
SG.18	Mice gut metabolomics after arsenic exposure and selenium supplementation158			
SG.19	Photothermally enhanced sunlight/chlorine-based process for the efficient degradation of			
pharma	ceuticals and personal care products in drinking water			
SG.20	Phosphate removal by La2(CO3)3-loaded anion-exchange resin in semi-fluidized bed reactors			
SG.21	Barbiturate-based Platform for Removal and Fluorimetric Quantification of Hg2+ metal ions in pollutant			
environi	ments			
SG.22	Reusable PET waste-derived magnetic mesoporous carbon nanocomposite as an effective adsorbent for			
the simu	ultaneous removal of carbamazepine, acetaminophen, and caffeine in wastewater162			
SG.23	Preconcentration and selective removal of cadmium (II) and Lead (II) using multi-template magnetic			
halloysit	te nano clay imprinted polymers163			
SG.24	A new colorimetric and fluorometric probe based on Seleno-BODIPY for the detection of cyanide and			
fluoride	ions			

INDEX OF PRESENTATIONS

SG.25	Monitoring of contamination by microplastics on sandy beaches at Vulcano Island (Italy) by different
spectros	copic techniques
SG.26	Assessing microbial diversity and EDCs removal in wastewater treatment plant using maturation ponds.
SG.27	Electrokinetic Remediation Approach Towards As, Pb, Cu and Ni Extraction from Bukit Ibam Iron Ore Mine
Tailing a	t Pahang State, Malaysia167
POSTI	ER COMMUNICATIONS168
P.1	Characteristics of natural zeolites of Kazakhstan and their application for water treatment169
P.2	Particulate matter and polycyclic aromatic hydrocarbons and their pathogenic roles in carcinogenesis of
	tic cancer
P.3 Plants	Optimization of Anaerobic-Aerobic Biotechnology of Wastewater Treatment of Whole Milk Processing 171
P.4	Development of an innovative technology for disposal of slag wastes from lead plant
P.5	Exploring a new molecular chemosensors based on naphthalimide: from chemical to environmental
potentia	l applications
P.6	Enhancing the Affordability and Efficacy of Antimicrobial Polymers through Acridine Derivative Doping
and Opti	ical Sensing Characterization
P.7	Pyridylpyrazole-based PMMA solid supports for the detection of strongly acidic atmospheric pollutants
P.8	Engineered Biochar Made from Waste Plum Stones as Efficient Sorbent in Phosphate Removal176
P.9	Evaluation of the efficacy of water filtration devices for domestic use in the elimination of non-steroid
anti-inflo	ammatory agents (NSAIDs)
P.10	Biosorption of brilliant green using Myriophyllum spicatum immobilized in alginate beads
P.11	Determination of bile acids in plasma of mice exposed to a metal-drug "chemical cocktail" 179
P.12	Development and evaluation of polymer-based nanocarriers as potential brain cancer targeted drug
delivery :	systems
	180
P.13	Design of silica-based nano adsorbent and their application in the analysis of cephalosporins 181
P.14	Enhancing the value of soils contaminated with heavy metals through the production of oil seed crops for
biofuels	
P.15	A novel Seleno-BODIPY fluorescent sensor for selective detection of biothiols in urine samples with distinct
response	es to Cysteine, Homocysteine, and Glutathione
P.16	Metal Ion Sensing and Reversible Acid-Induced Emission Modulation of 9-Aminoacridine Derivative and
polymer-	-supported applications, Advancing Water Detection in Organic Solvents

P.17	Materials in contact with drinking water: validation of liquid-liquid extraction and gas chromatograph	hy-
mass spe	ectrometry method for monitorization of eleven nitrosamines18	35
P.18	Optimization and Validation of Micro-FTIR Method for the Analysis of Microplastics in Drinking Wa	ter
	186	
P.19	Heterologous production of bacterial laccases for polycyclic aromatic hydrocarbon biodegradation 18	37
P.20	Direction of influx of odorous pollutants and assessment of air quality in areas adjacent to waste treatme	ent
facilities	and industrial plants18	38
P.21	Regeration of used motor oils using natural minerals	39
P.22	REMOVAL OF PHENOL USING REDUCED GRAPHENE OXIDE DERIVED FROM BIOMASS	AS
ADSORB	BENT: ISOTHERM, KINETIC, AND THERMODYNAMIC STUDY19	90

WELCOME 5th PTIM 2023

5th International Caparica Conference on Pollutant Toxic Ions and Molecules 2023

Warm Greetings to the Esteemed Participants of the 5th International Caparica Conference on Pollutant Toxic lons and Molecules!

We are delighted to welcome you to the charming coastal town of Costa de Caparica, Portugal, which hosted this enlightening conference from November 6th to 9th, 2023. This pivotal event united experts, researchers, and practitioners from 28 nations, fostering a vibrant exchange of innovative ideas and findings in environmental science.

In a time characterized by unparalleled industrial and urban growth, pollution and its extensive repercussions have emerged as a global dilemma. Pollutant toxic ions and molecules, originating from diverse sources like

WELCOME

industrial activities, agriculture, and urban runoff, pose a significant threat to ecosystems, human health, and our planet. A deep understanding of these pollutants, their behaviors, and impacts across various environments is vital for crafting effective mitigation strategies and policy actions.

The conference carved out a distinctive platform for multidisciplinary dialogues, enabling specialists from varied fields such as chemistry, environmental science, toxicology, public health, policy, and engineering to disseminate their most recent research outcomes, insights, and technological advancements. The objective was to encourage collaboration, bridging theoretical and practical divides, and facilitating the development of sustainable solutions to challenges presented by pollutant toxic ions and molecules.

The scenic village of Caparica, with its breathtaking coastline, served as a motivational setting for this scholarly exchange. Enriched by Lisbon's cultural heritage, exquisite local cuisine, and stunning vistas of the Atlantic Ocean, Caparica provided a vibrant atmosphere for participants to engage in profound discussions, forge valuable networks, and explore new research avenues.

This volume encompasses the works presented at the conference, covering a broad array of topics related to pollutant toxic ions and molecules. The papers herein demonstrate pioneering research methodologies, innovative technologies, and fresh insights into pollutants' sources, fate, transport, and impact. We aspire for these proceedings to serve as a precious resource for scholars and researchers and to further the global discourse on environmental sustainability.

Our sincere thanks go to all authors, presenters, attendees, sponsors, and organizers who played a part in making this conference a triumph. Their commitment and zeal have marked this event as a significant landmark in the pursuit of a cleaner and healthier planet.

The PTIM conference series has firmly positioned itself as a leading international scientific forum, covering environmental, chemical, health, and well-being sciences. Previous editions in 2015, 2017, 2019, and 2021 explored topics like emerging toxic contaminants, broader pollution issues, detection and protection trends, and health implications. The 2023 edition symbolizes a rekindling of connections, promoting collaboration to protect the environment and health amidst the dual challenges of climate change and global pollution post-pandemic.

In 2023, our plenary speakers include eminent figures like Professors Irene MC Lo (Hong Kong), Tamara García Barrera (Spain), Damiá Barceló (Spain), Joanna Burger (USA), Jorg Rinklebe (Germany), Jay Gran (USA), and Sergey Shabala (Australia). Moreover, a lineup of outstanding keynote and KPRK speakers including José Luis Gomez Ariza (Spain), Franz Jirsa (Austria), Jakub Zdarta (Poland), Rut Fernandez Torres (Spain), Maria Ramos Payan (Spain), Michael Gochfeld (USA), Artur Badyda (Poland), Philishwa Nomngongo (South Africa), Jurgen Gailer (Canada), Luiza Campos (UK), and Elisabete Oliveira (Portugal). With 150 participants from 28 countries presenting 7 Plenary talks, 14 Advanced Keynotes, 40 oral presentations, 30 posters, and 27 shotgun presentations (both oral and poster), elevates the conference to a paramount environmental protection and health discussion event.

On behalf of the BIOSCOPE Research Group, the PROTEOMASS Scientific Society, The LAQV-REQUIMTE Laboratory, the FCT-NOVA, NOVA University Lisbon, we are thrilled to welcome you to the 5th edition of the International Caparica Conference on Pollutant Ions and Molecules, PTIM2023. Your attendance and participation symbolize a steadfast dedication to preserving our environment and ensuring global health.

Carlos Lodeiro, MSc PhD FRSC

José Luis Capelo-Martínez, MSc PhD FRSC

Hugo M. Santos, MSc PhD PhD

Elisabete Oliveira, MSc PhD PhD

Chairs

5th PTIM 2023 - Participants' Demographics

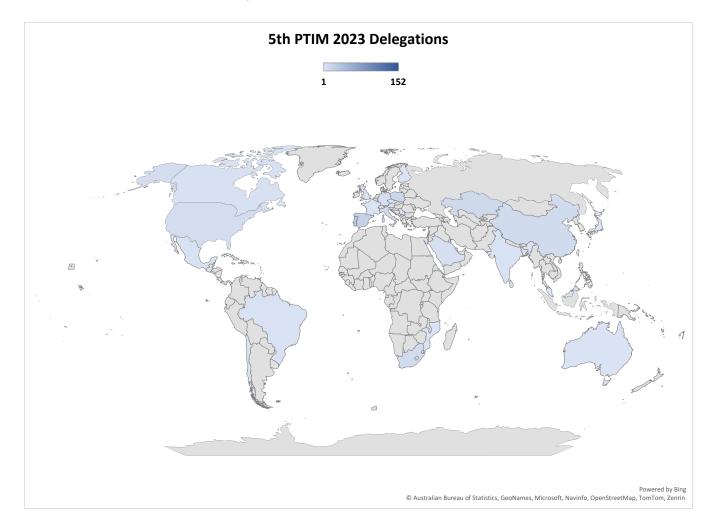


Figure 1 - Participants in the 5th PTIM 2023 Conference by country: Australia (1), Austria (3), Belgium (1), Brazil (2), Canada (3), Chile (1), China (9), Czech Republic (2), Finland (1), France (1), Germany (5), India (2), Israel (3), Italy (8), Japan (1); Kazakhstan (12), Malaysia (1), Mexico (2), Mozambique (1), Poland (14), Portugal (30), Saudi Arabia (4), Serbia (3), Slovenia (1), Singapore (2), South Africa (10), Spain (20), United Kingdom (2), United States of America (7)

COMMITTEES

CONFERENCE CHAIRS

José Luis Capelo Martínez

Head of the Bio-analytics & Proteomics Laboratory
BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group,
LAQV-REQUIMTE, Department of Chemistry
NOVA School of Science and Technology, NOVA University Lisbon
(Caparica, Portugal)

Chairman of the PROTEOMASS Scientific Society e-mail: jlcm@fct.unl.pt | jlcapelom@bioscopegroup.org

Dr. J. L. Capelo, a distinguished researcher and Associate Professor in the Chemistry Department (Biochemistry) at FCT NOVA, has carved a notable path in Analytical Proteomics. Earning his PhD from the University of Vigo (Spain) in 2002, he embarked on a post-doctoral position at IST-UL in Lisbon (2002-2005), followed by a research position at REQUIMTE (FCT-NOVA, 2005-2009). His journey then took him back to the University of Vigo as a Principal Investigator (2009-2012) before being appointed as an Assistant Professor at FCT-NOVA in 2012. A Fellow of the Royal Society of Chemistry and a member of the Portuguese Chemistry Society, Dr. Capelo achieved habilitation in Analytical Proteomics in Portugal at FCT-NOVA in 2017, subsequently becoming an Associate Professor. He co-leads the BIOSCOPE research group and holds the position of Chairman at the PROTEOMASS Scientific Society, alongside being the Founder and co-CEO of the Chemicals start-up Nan@rts.

Dr. Capelo's research spans various topics, including the quantification of metal and metal species in environmental and food samples, developing methods for speedy protein identification using mass spectrometry-based workflows, bacterial identification via mass spectrometry, and exploring applications of nanoparticles in nano-proteomics and nanomedicine, among others. Having mentored 12 PhDs with an additional 4 in progress, Dr. Capelo continues contributing significantly to the field, guiding the next generation of researchers and exploring innovative avenues in environmental science and proteomics.

COMMITTEES

Carlos Lodeiro Y Espiño

Head of the Chemistry & Nano-synthesis Laboratory
BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group,
LAQV-REQUIMTE, Department of Chemistry
NOVA School of Science and Technology, NOVA University Lisbon
(Caparica, Portugal)
CEO of the PROTEOMASS Scientific Society
e-mail: cle@fct.unl.pt | clodeiro@bioscopegroup.org

Dr. C. Lodeiro graduated in Chemistry in 1995, and received his PhD in chemistry in 1999 from the University of Santiago de Compostela, Spain. In 1999 he moved to the NOVA University Lisbon (NOVA), Portugal as a European Marie Curie postdoctoral researcher in a project concerning molecular devices and machines, and in 2004 he became a fellow researcher and invited assistant lecturer at the REQUIMTE-CQFB, Chemistry Department (NOVA). In 2008 Dr. Lodeiro got the habilitation in Chemistry in Spain, and a year later in 2009 he moved to the University of Vigo, Faculty of Sciences of Ourense (FCOU), Spain as IPP (Isidro Parga Pondal) researcher-lecturer. In 2012 became Assistant Professor at the Chemistry Department UCIBIO-REQUIMTE Laboratory in the NOVA School of Science and Technology, FCT-NOVA. Dr. Lodeiro is a Fellow of the Royal Society of Chemistry since 2014 and member of the Portuguese Chemistry Society since 2002, and the American Chemical Society since 2016. In 2017 got the habilitation in Inorganic Analytical Chemistry in Portugal at the FCT NO and became Associate Professor in the Chemistry Department FCT-UNL. Presently he co-leads the BIOSCOPE research group (www.bioscopegroup.org), he is CEO of the PROTEOMASS Scientific Society, and Founder co-CEO of the Chemical start-up Nan@rts. His research interest comprises (i) physical-organic and physical-inorganic chemistry of dyes and chemosensors, (ii) synthesis of Functionalized Nanoparticles, Nanocomposites and Nanomaterials (iii) applications of nanomaterials in environmental research, (iv) application of nanomaterials in bio-medical research, (v) supramolecular analytical proteomics, and (vi) Onco and Nanoproteomics. C. Lodeiro has mentored 12 PhDs plus 3 in course.

Hugo Miguel Santos

Head of the Laboratory for Biological Mass Spectrometry & Functional - Associations of Post-Translational Modifications - Head of the Laboratory for Biological Mass Spectrometry - Isabel Moura - BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry - NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal) - Chief Proteomics Technology Officer PROTEOMASS Scientific Society

e-mail: hmsantos@fct.unl.pt

HM Santos began his career in Proteomics in 2007, embarking on a joint PhD program in Biochemistry at NOVA University Lisbon (Portugal) and the Turku Centre for Biotechnology (Finland) working with state-of-the-art MS instrumentation for biomedical research. H.M. Santos took up a post-doc at the University of Vigo (2010-12 to 2011-03) followed by a move to the Institute of Biomedicine and Biotechnology (Barcelona, Spain, 2011-04 to 2012-03) to advance biomedical applications of mass spectrometry and translational research. In 2011 H.M. Santos moved to FCT NOVA to continue his research in Biological Mass Spectrometry. Currently, he is Assistant Researcher at LAQV-REQUIMTE FCT NOVA (Portugal). H.M. Santos is Member of the Royal Society of Chemistry. His scientific interests are focused on (i) Identification of molecules involved in complex biological processes, characterize their structure and monitor how their abundance may change during these processes, in order to gain insights into the underlying molecular mechanisms; (ii) nano-proteomics and nano-medicine; (iii) application of chemosensor to the detection/quantification of metals; (iv) Mass spectrometry analysis of organic molecules, metal complexes and supramolecular systems. To date, he has mentored 6 PhDs.

Elisabete Oliveira

Head of the Laboratory for Messoporous Silica Materials BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry - NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal) - PROTEOMASS Scientific Society e-mail: ej.oliveira@fct.unl.pt

Dr. E. Oliveira graduated, in 2006, in Applied Chemistry from FCT- Nova University Lisbon, Portugal, in 2007 obtained a master's in biotechnology and completed a PhD degree in Biotechnology in 2010, at the same University. In 2013, she obtained a second PhD degree in "Food Science and Technology" by the Science Faculty of Ourense Campus at the University of Vigo, Spain. Currently, she is Assistant Researcher at LAQV-REQUIMTE FCT NOVA (Portugal). In 2008, E. Oliveira received the prize in Creativity and Quality in Research Activity in sensors area, attributed by Foundation Calouste Gulbenkian, Portugal and in 2016 she was awarded with the Prize For Women in Science, "Medalhas de Honra L'Oréal Portugal para as Mulheres na Ciência" in the field of health Sciences. Her scientific interests are focused in (i) synthesis of new bio-inspired emissive ligands as fluorescence chemosensors, (ii) supramolecular chemistry (Photophysics and photochemistry), (iii) applications in vitro (solution and solid studies) and in vivo (cell imaging studies); (iv) synthesis of new emissive nanomaterials, as Quantum Dots and Mesoporous Silica nanoparticles for dual drug delivery and biomarker discovery in biological samples, and (v) Antibacterial studies of cargo-delivery mesoporous nanoparticles. To date, she has mentored 1 PhD plus 3 in course.

SCIENTIFIC COMMITTEE

Adrián Fernández-Lodeiro | MSc | PhD | MRSC

University of Cyprus School of Engineering, Department of Electrical and Computer Engineering (Cyprus)

Carlos Lodeiro Espiño | MSc | PhD | FRSC

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal)

Damiá Barceló, PhD

Catalan Institute for Water Research (ICRA). Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Barcelona (Spain)

Elisabete Oliveira | MSc | PhD | PhD

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal)

Gilberto Igrejas | PhD

University of Trás-os-Montes and Alto Douro, ECVA-DGB, LAQV-REQUIMTE (Portugal)

Hugo Miguel Santos | MSc | PhD | PhD | MRSC

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal)

Irene M. C. Lo. PhD

The Hong Kong University of Science & Technology (China)

Javier Fernández-Lodeiro | MSc | PhD

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal)

Jay Gan, PhD

Department of Environmental Science, University of California, Riverside, CA (USA)

Joanna Burger, PhD

Rutgers University, Piscataway, New Jersey (USA)

COMMITTEES

Jörg Rinklebe, PhD

University of Wuppertal (Germany)

José Luis Capelo Martínez | MSc | PhD | FRSC

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal)

Sergey Shabala, PhD

University of Western Australia (Australia)

Tamara Garcia Barrera, PhD

Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva (Spain)

LOCAL ORGANIZING COMMITTEE

José Luis Capelo Martínez | MSc | PhD | FRSC

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal)

Carlos Lodeiro Espiño | MSc | PhD | FRSC

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal)

Gilberto Igrejas | PhD

University of Trás-os-Montes and Alto Douro, LAQV-REQUIMTE (Portugal)

Hugo Miguel Santos | MSc | PhD | PhD | MRSC

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal)

Elisabete Oliveira | MSc | PhD | PhD

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal)

Javier Fernández-Lodeiro | MSc | PhD

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal)

Luis Carvalho | MSc

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal)

Silvia Nuti | MSc

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal)

Frederico Duarte | MSc

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal)

Joana Galhano | MSc

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal)

COMMITTEES

André Figueiredo | MSc

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal)

Gonçalo Pedro | BSc

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal). PROTEOMASS Scientific Society (Caparica, Portugal)

Inês Domingos | BSc

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal)

Marcos Correia | MSc

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal)

Ines Gomes | MSc

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal)

Diogo Torres | MSc

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal)

João Montes | MSc

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal)

Margarida Caetano | MSc

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal)

Raquel Fonseca | MSc

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal)

Tomás Miranda | MSc

PROTEOMASS Scientific Society (Caparica, Portugal)

CONFERENCE SECRETARIAT

Carlos Lodeiro Y Espiño | MSc | PhD | FRSC

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal)

Frederico Duarte | MSc

BIOSCOPE Research Group & (Bio)Chemistry and OMICS Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal)

E-mail: clodeiro@bioscopegroup.org

E-mail: clodeiro.ptim2023@bioscopegroup.org

Phone: +351 919 404 933 / +351 916 949 133

Web: https://www.ptim2023.com/

©2023 BIOSCOPE Research Group | PROTEOMASS Scientific Society

SPONSORS AND PARTNERS

SPONSORS

Bruker

www.bruker.com

PROTEOMASS Scientific Society

www.proteomass.org

Visit Portugal

www.visitportugal.com

Turismo de Lisboa

www.visitlisboa.com

STAB Vida

www.stabvida.com

Doctor Vida

www.doctorvida.com

LaborSpirit

www.laborspirit.com

Nan@rts

www.nanoarts.org

PARTNERS

NOVA Univeristy Lisbon

www.unl.pt

NOVA School for Science and Technology

www.fct.unl.pt

LAQV@REQUIMTE

https://laqv.requimte.pt

Câmara Municipal de Almada

www.m-almada.pt

Journal of Integrated OMICS

www.jiomics.com

BIOSCOPE Research Group

www.bioscopegroup.org

Caparica Científica

www.bioscopegroup.org

P.8 Engineered Biochar Made from Waste Plum Stones as Efficient Sorbent in Phosphate Removal.

Zorica Lopičić¹*, Anja Antanasković¹, Tatjana Šoštarić¹, Marija Đošić¹, Jelena Milojković¹, Sylvain Bourgerie², Domenico Morabito²

¹ Institute for Technology of Nuclear and other Mineral Raw Materials, Serbia. ²University of Orleans, INRA USC1328, LBLGC EA 1207, France. * z.lopicic@itnms.ac.rs

The concerns over the environmental and economic issues of the phosphates as eutrophication agents are continiously rising, due to their toxic effects on the whole environment. The greatest risk arises from entering phosphates into water streams as the runoff from agricultural lands and those from sewage water. Among the conventional methods used for phosphate removal, adsorption technology appeared as the most promising one, due to its simplicity and economical feasibility. Another advantage of this technique is the possibility of sorbent regeneration with low amounts of by-products, and possible reuse of regenerated sorbate in different applications, including agriculture. Amongst many sorbents widely used, modified activated carbon (AC) is mostly used, but the application of modified AC raises costs of AC production/application. In the sense of this, the search for cheaper sorbents with higher phosphate removal capacity is still needed. Biochar (BC) is a cost-effective and environmental friendly stable solid material rich in carbon, resistant to decomposition and mineralization [1]. Although BC and AC are made from similar raw materials, BC is usually produced at lower temperatures, resulting in a price of BC that is app. 1/6 of the price of the commercial AC [2]. In the last decade, BC is receiving great attention as a promising sorbent for different pollutants from water streams, but the use of BC also supports the reduction of greenhouse gases and its application into soils enhance the soil fertility. Many recent studies with unmodified BCs [3] have shown lower phosphate removal ability, indicating negative surface charge as one of the factors influencing lower removal of negatively charged ions over a wide pH range. In order to increase BCs sorption capacity toward phosphates, the introduction of some cationic species is often required. In this paper, synthesis of MgO-biochar from waste lignocellulosic biomass was applied, in order to create highly porous nanocomposite material with efficient phosphate removal. For this purpose, feedstock used to make the MgO-biochar nanocomposites were plum stones (PmS) obtained from the local factory, where they have been disposed as a waste. After receiving, feedstock was air dried and milled into 0.1-0.5 mm particles. MgCl₂·6H₂O was used to prepare a solution to pre-treat the PmS feedstock according to the procedure described in [4]. After immersing procedure, the oven dried mixture was heated at 10 °C/min up to 500 °C under Ar flow for 1,5 h. For the purpose of sorbent characterisation, pH_{pzc}, XRD, TG-DTG and FTIR analysis were performed. The existence of Mg nanoparticles shifts the pH_{PZC} from 6.7 to highly alkaline value of 10.7 which facilitates the electrostatic interactions between the negatively charged PO₄³⁻ ions and PmS-M-B. The diffraction peaks identified as MgO revealed that MgO particles were highly crystalline, and uniformly deposited across the entire PmS-M-B surface. TGA analyses revealed four stage degradation, where the peaks for the PmS-M-B shifted to the higer temperatures compared to the unmodified biochar (PmS-B) and higher residual mass after final combustion stage. FTIR spectra have showed most band differences in the 1800-600 cm⁻¹ range. The characterised MgO-biochar nanocomposite produced from pyrolysis (PmS-M-B) was further used in sorption experiments. A stock phosphate solution was prepared using KH₂PO₄ and diluted to the required concentrations. The adsorption isotherm of phosphate on the PmS-M-B was determined using the batch sorption technique by mixing 0.1 g of the biochar sample with 50 mL of phosphate solutions of different concentrations ranging from 10 to 500 mg/L. The reaction vessels were shaken (150 rpm, 25 °C) and after the desired contact times (from 5 min to 24 h), the samples were filtered, phosphate concentrations in the liquid phase samples were determined using MD 610 colorimeter (Lovibond, Germany), and the amount of PO₄3- adsorbed onto PmS-M-B was calculated. Data obtained through the isothermal experiments were fitted using three commonly applied isotherms: Langmuir, Freundlich and Sips. Isotherm equilibrium modelling revealed that the Sips isotherm provided the best model fit with maximum sorption capacity of 181.46 mg/g. This sorption capacity is much higher than the most of the others reported in literature [5, 6] .A possible sorption mechanism of PO₄³ removal might be assigned to electrostatic attraction and hydrogen bonding, Obtained results demonstrated that engineered MgO-biochar derived from waste PmS can be used as a promising green material for removing phosphates from contaminated waters, providing opportunities in developing low-cost and highly efficient material to resolve eutrophication issue. In the same time, environmental benefits might be multiple: decreasing environmental hazards by reducing waste landfills, and also using exhausted sorbate in soil remediation and as a slow release fertilizer, confirming advantages of the biochars amongst the other available adsorbents.

References

- [1] Wardle, D.A. et al. Fire-derived charcoal causes loss of forest humus, Science, 2008, 629. https://doi:10.1126/science.1154960
- [2] Zhang, X. et al. Adsorption of VOCs onto engineered carbon materials: A review, Journal of Hazardous Materials, 2017, 102-123. https://doi.org/10.1016/j.jhazmat.2017.05.013.
- [3] Dai, Y. et al. Utilization of biochar for the removal of nitrogen and phosphorus, Journal of Cleaner Production, 2020, 120573. https://doi.org/10.1016/j.jclepro.2020.120573
- [4] Orlić, M.. et al. Phosphate Removal by Novel Mg-impregnated Biochar Obtained from Waste Plum Stones, *Proceedings of the 43th International conference Waterworks and Sewerage 22*, **2022**, 173-180.
- [5] Almanassra, I. et al. A state of the art review on phosphate removal from water by biochars, Chemical Engineering Journal, 2021, 128211. https://doi.org/10.1016/j.cej.2020.128211.
- [6] Zhang, M. et al. Synthesis of porous MgO-biochar nanocoimposites for removal of phosphate and nitrate from aqueous solutions, Chemical Engineering Journal, 2012, 26-32. https://doi.org/10.1016/j.cej.2012.08.052

Acknowledgements: This work was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (grant no 451-03-47/2023-01/200023) and "Pavle Savić" bilateral project (2023-2024), Grant # 337-00-93/2023-05/14