# UNIVERZITET U BEOGRADU RUDARSKO-GEOLOŠKI FAKULTET

Katedra za pripremu mineralnih sirovina



# ZBORNIK RADOVA

## X KOLOKVIJUM

O PRIPREMI MINERALNIH SIROVINA

Beograd, 8. decembar 2023.

#### X Kolokvijum o pripremi mineralnih sirovina ZBORNIK RADOVA

RECENZENTI: Prof. dr Predrag Lazić Prof. dr Milena Kostović

UREDNIK: *Prof. dr* Milena Kostović

PREDSEDNIK UREĐIVAČKOG ODBORA RUDARSKO-GEOLOŠKOG FAKULTETA: *Doc. dr* Dragana Nišić

#### ČLANOVI UREĐIVAČKOG ODBORA:

Dr Marija Živković, van. prof.; dr Dragana Nišić, docent; dr Milanka Negovanović, van. prof.; dr Ivana Vasiljević, van. prof.; dr Danica Srećković Batoćanin, red. prof.; dr Biljana Ablomasov, red. prof.; dr Ranka Stanković, van. prof.; dr Nevenka Đerić, red. prof.; dr Suzana Lutovac, van. prof.; Marina Bukavac

IZDAVAČ:

Univerzitet u Beogradu, Rudarsko-geološki fakultet Katedra za pripremu mineralnih sirovina

Radovi su štampani u izvornom obliku uz neophodnu tehničku obradu. Autori odgovaraju za svoje stavove i saopštene podatke. Nijedan deo ove publikacije ne može biti reprodukovan, presniman ili prenošen bez pismene saglasnosti izdavača

KOMPJUTERSKI SLOG: *Dr* Đurica Nikšić

ŠTAMPA: SaTCIP, Vrnjačka Banja Tiraž: 150 komada

СІР - Каталогизација у публикацији Народна библиотека Србије, Београд

622.7(082)

#### КОЛОКВИЈУМ о припреми минералних сировина (10; 2023; Београд)

Zbornik radova / X kolokvijum o pripremi mineralnih sirovina, Beograd, 8. decembar 2023. ; [urednik Milena Kostović]. - Beograd : Rudarsko-geološki fakultet, Katedra za pripremu mineralnih sirovina, 2023 (Vrnjačka Banja : SaTCIP). - [15], 195 str. : ilustr. ; 25 cm

Tiraž 150. - Str. [9-10]: Predgovor / Organizacioni odbor. - Bibliografija uz svaki rad.

ISBN 978-86-7352-395-8

а) Руде -- Припрема -- Зборници

COBISS.SR-ID 131574793

Beograd, 2023. godine ISBN 978-86-7352-395-8 ©Sva prava zadržava izdavač

### **ORGANIZATOR:**

Katedra za pripremu mineralnih sirovina Rudarsko-geološkog fakulteta, Beograd

### **POČASNI ODBOR:**

Prof. emeritus dr Nadežda ĆALIĆ, red. prof. u penziji
Prof. dr Slaven DEUŠIĆ, red. prof. u penziji
Prof. dr Svetlana POPOV, red. prof. u penziji
Prof. dr Rudolf TOMANEC, red. prof. u penziji
Prof. dr Dušica VUČINIĆ, red. prof. u penziji
Prof. dr Vladimir ČEBAŠEK, rukovodilac Rudarskog odseka, RGF
Prof. dr Biljana ABOLMASOV, dekan Rudarsko-geološkog fakulteta

### NAUČNI ODBOR:

Prof. dr Predrag LAZIĆ, RGF - Beograd
Prof. dr Milena KOSTOVIĆ, RGF - Beograd
Dr Đurica NIKŠIĆ, RGF - Beograd
Prof. dr Jovica SOKOLOVIĆ, Tehnički fakultet - Bor
Dr Dragan RADULOVIĆ, ITNMS - Beograd
Dr Dragan MILANOVIĆ, IRM - Bor
Mr Zorica VUKADINOVIĆ, Ministarstvo rudarstva i energetike R. Srbije
Mr Jasmina NEŠKOVIĆ, Rudarski institut - Zemun

### **ORGANIZACIONI ODBOR:**

Prof. dr Milena KOSTOVIĆ, predsednik Master ing. Marina BLAGOJEV, sekretar Prof. dr Predrag LAZIĆ, član Dr Đurica NIKŠIĆ, član Dipl. ing. Branislav MIKOVIĆ, član Organizovanje X Kolokvijuma o pripremi mineralnih sirovina i štampanje zbornika radova finansijski su pomogli:

# Ministarstvo nauke, tehnološkog razvoja i inovacija Republike Srbije

### Rudarski odsek Rudarsko-geološkog fakulteta, Beograd

Elixir Prahovo

### SADRŽAJ:

| SADRŽAJ:                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROFESOR DR DRAGIŠA DRAŠKIĆ9                                                                                                                                             |
| ISPITIVANJE SEPARABILNOSTI UGLJEVA PRIMENOM<br>KOEFICIJENTA SEPARABILNOSTI, IW I NGMI INDEKSA1                                                                           |
| LABORATORIJSKO I POLUINDUSTRIJSKO ISPITIVANJE<br>USPEŠNOSTI FLOTACIJSKE KONCENTRACIJE MINERALA<br>CERUZITA RUDNOG LEŽIŠATA OČEKALJ, RUDNIKA GEOMET<br>D.O.O. OLOVO BIH12 |
| KARAKTERIZACIJA PEPELA, ŠLJAKE I GIPSA U CILJU RAZVOJA<br>TEHNOLOGIJE NJIHOVOG ZAJEDNIČKOG ODLAGANJA                                                                     |
| POLIMORFNE PROMENE MATERIJE NASTALE MLEVENJEM<br>MINERALA                                                                                                                |
| PROCENA RIZIKA OD UDESA NA FLOTACIJSKOM JALOVIŠTU<br>RUDNIKA "LECE" PRE I POSLE SANACIJE                                                                                 |
| UTVRÐIVANJE PARAMETARA MOKROG MLEVENJA FOSFATA U<br>KOMPANIJI "ELIXIR" PRAHOVO                                                                                           |
| SAVREMENA OPREMA ZA ODVODNJAVANJE PROIZVODA<br>FLOTACIJSKE KONCENTRACIJE75                                                                                               |
| ANALIZA RIZIKA FLOTACIJSKIH JALOVIŠTA                                                                                                                                    |
| MODERNIZACIJA FLOTACIJA U OKOLINI BORA                                                                                                                                   |
| STUDIJA IZVODLJIVOSTI NADZEMNE GASIFIKACIJE LIGNITA KAO<br>MOGUĆE KONCEPTUALNO REŠENJE ZA STRATEŠKI PRISTUP<br>PRAVEDNOJ ENERGETSKOJ TRAZICIJI                           |
| UNAPREĐENJE PROCESA PRIPREME I PRERADE LIMONITNE<br>RUDE U POSTROJENJU GMS – OMARSKA111                                                                                  |
| PROIZVODNJA UGLJA IZ SEKUNDARNOG TEHNOGENOG<br>LEŽIŠTA NA RUDNIKU UGLJA KOVIN122                                                                                         |
| PREČIŠĆAVANJE OTPADNIH VODA I TRETMAN MULJA IZ<br>Postrojenja za PMS- preduslovi, metode i izazovi                                                                       |
| OPŠTI FAKTORI ODLAGANJA CEMENTNIH SMEŠA JALOVINE KAO<br>ZAPUNA U RUDNICIMA153                                                                                            |
| EU POJEKTI -MOGUĆNOST I ŠANSA ZA UKLJUČIVANJE I<br>ANGAŽMAN NAUČNIH KADROVA IZ GEOLOGIJE I RUDARSTVA<br>(POSEBNO PMS-STRUKE). SA OSVRTOM NA PROJEKAT RIS-                |

RECIKLAŽA I PONOVNA UPOTREBA FLOTACIJSKE JALOVINE RUDNIKA "RUDNIK" U CILJU OSVAJANJA TEHNOLOŠKIH POSTUPAKA PRERADE SEKUNDARNIH SIROVINA U SRBIJI – PROJEKAT IZ PROGRAMA PRIZMA (2024-2026) - REASONING....... 180

#### POLIMORFNE PROMENE MATERIJE NASTALE MLEVENJEM MINERALA

Milan Petrov<sup>1</sup>, Ljubiša Andrić<sup>1</sup>, Milena Kostović<sup>2</sup>, Vladimir Jovanović<sup>1</sup>, Dragan Radulović<sup>1</sup>, Dejan Todorović<sup>1</sup>, Branislav Ivošević<sup>1</sup>

<sup>1</sup>Institut za tehnologiju nuklearnih i drugih mineralnih sirovina, Beograd,

<sup>2</sup>Rudarsko geološki fakultet, Beograd

Sažetak: U radu su prikazani rezultati istraživanja iz oblasti usitnjavanja, sakupljani duži niz godina, u Institutu za tehnologiju nuklearnih i drugih mineralnih sirovina. Poznato je da se područja sa frekfencijama preko 3.10<sup>11</sup> do 3.10<sup>14</sup> Hz nalaze u elektromagnetnom spektru infracrvenog i daleko infracrvenog emitovanog ili apsorbovanog zračenja. U radu su prikazani rezultati kada se materijal i kugle u mlinu nalaze na jednoj od pomenutih frekfencija, što nam omogućava da pomoću Borovog uslova frekfencija pristupimo izračunavanju emitovanih i apsorbovanih molarnih energija [1][2]. Polimorfne promene materije pri usitnjavanju su promene izazvane fizičkim procesima, odnosno emitovanjem određene količine energije od strane mlina i adsorbovanjem tih energija od strane materijala. Izvršen je pokušaj da se odrede nivoi tih energija. Prikazani rezultati pokazuju da sve jedinke u mlinu pretrpe lokalni pritisak i tada na njima, delimično ili u celini, dolazi do polimorfnih promena materije menjajući fazna stanja i kristalnu strukturu iste. Na zrnima minerala na veoma ograničenim mestima po površini (10<sup>-3</sup> do 10<sup>-5</sup> cm<sup>2</sup>) i u kratkim vremenskim periodima trajanja (10<sup>4</sup>s) dolazi do povećanja temperature čak do 1000 C što su autori iz reference [3] nazvali magma plazma modelom slika 1.



Slika 1. Magma plazma model [3]

Rad prikazuje praćenje polimorfnih promena materija preko promena njihovih termodinamičkih veličina. Takođe, postoje i velike razlike polimorfnih

promena minerala u zavisnosti od mineraloškog oblika u kojem se materija nalazi [4][8].

Ključne reči: Mlevenje, polimorfne promene, gustina energije, fazna stanja, energija rešetke, potencijal sveže obrazovanih površina.

#### UVOD

Usitnjavanje ima veoma značajnu ulogu u pripremi mineralnih sirovina [5]. Proces usitnjavanja se odlikuje značajnom potrošnjom energije i metala. Merodavne procene ukazuju da se čak blizu 10% proizvedene električne energije i 3% metala u svetu troši na usitnjevanje najrazličitijih materijala. Proračuni o utrošku energije se svode na proračun o snazi izvora energije. Za 2005. godinu podatak o utrošenoj snazi izvora energije za čitavo čovečanstvo na zemaljskoj kugli je 1,3·10<sup>13</sup> W [6]. Snaga za zadovoljavanje bioloških potreba čovečanstva u tom periodu iznosi 6,5·10<sup>11</sup> W. Snaga jedne nuklearke je 1·10<sup>9</sup> W. Snaga jedne vetroelektrane je 1.106 W, a snaga jednog prosečnog industrijskog mlina u rudarstvu je 1,1.10<sup>6</sup> W [8] što nam govori o razmerama snage potrebne za usitnjavanje rude. Očigledno je da o veličini energije, koju izražavamo u Džulima (J), kao jedinici za energiju, rad i toplotu, razmišljamo preko potrebnih snaga izvora energija u W, jer njih možemo meriti. Kada govorimo o emisinoj i/ili absorbcionoj molarnoj energiji tada govorimo o molarnoj energiji u  $\frac{f}{mat}$  ili gustini energije [6] čija je jedinica mere izražena u  $\frac{J}{k_{\varphi}}$  *ili*  $\frac{kWb}{t}$ . Ove jedinice mere (uključujući tu i staru jedinicu mere za molarnu toplotu  $\frac{Kcal}{mal}$ ) možemo međusobno konvertovati, jer se radi o istoj fizičkoj veličini, a da bi nakon toga mogli upoređivati dobijene vrednosti. Veza energije i gustine energije dolazi iz poznate opšte formule za energiju i masu koja glasi:

$$Energija = masa \cdot (brzina)^2$$
(7)

tako da imamo da je (brzina)<sup>2</sup> =  $\frac{E}{m}$ , zapravo gustina energije. Gustina energije kristalne rešetke po Kapustinskom data je u tabeli 1 [7].

|           |                   |             |                                |                 |            | 1  |                                   |             |                               |       |
|-----------|-------------------|-------------|--------------------------------|-----------------|------------|----|-----------------------------------|-------------|-------------------------------|-------|
| Mineral   | Formula           | Kcal<br>mol | Energija<br>$\frac{kJ}{mol}$ ; | $\frac{kWh}{t}$ | Mineral    | ]  | Formula                           | Kcal<br>mol | Energija<br><u>kj</u><br>mol' | kWh   |
| Argentit  | Ag <sub>2</sub> S | 620;        | 2604;                          | 2917            | Sfalerit   |    | ZnS                               | 852;        | 3578;                         | 10246 |
| Halkozin  | Cu <sub>2</sub> S | 680;        | 2856;                          | 4966            | Kovelin    |    | CuS                               | 890/832;    | 3738;                         | 10929 |
| Galenit   | PbS               | 730;        | 3066;                          | 3593            | Halkopirit |    | CuFeS <sub>2</sub>                | 4172;       | 17522;                        | 25089 |
| Grinokit  | CdS               | 810;        | 3402;                          | 6514            | Bornit     | (  | Cu <sub>3</sub> FeS <sub>3</sub>  | 2320;       | 9744;                         | 7891  |
| Pirotin   | FeS               | 840;        | 3528;                          | 11136           | Tetraedrit | 30 | Cu <sub>2</sub> SSbS <sub>3</sub> | 4940;       | 20748;                        | 5574  |
| Cinabarit | HgS               | 840;        | 3528;                          | 4224            | Tenantit   | 30 | $Cu_2SAs_2S_3$                    | 5040;       | 21168;                        | 4839  |

Tabela 1. Energija kristalne rešetke po Kapustinskom[7] [11]

Brzina oksidacije sulfidnih minerala u vodi je različita i zavisi od otpornosti kristalne rešetke i porasta potencijala sveže obrazovanih površina.

Brzina oksidacije raste sa opadanjem energije rešetke  $(\frac{J}{mol})$ , i porastom potencijla  $E^{\theta}$  (V) [7].

#### PRORAČUN EMITOVANE MOLARNE ENERGIJE MLINA

Ideja za proračun molarnih energija u mlinu, prema Borovom uslovu frekfencije i jednačini 2 [1], nastala je kada smo uočili granice u kojima se kreće broj zrna (jedinki) u mlinu.

$$E_{više} - E_{niže} = h \cdot \nu = h \cdot \frac{c}{\lambda}$$
(8)

Gde je:

| Plankova konstanta | $h = 6,626 \ 10^{-34}$   | u | Jc,   |
|--------------------|--------------------------|---|-------|
| frekfencija        | ν                        | u | Hz    |
| brzina svetlosti   | c =2,998 10 <sup>8</sup> | u | ms⁻¹, |
| talasna dužina     | λ                        | u | m     |

Analizirajući veliki broja granulometrijskih sastava raznih sirovina [2], zapazili smo da je broj zrna po obrtaju mlina pomnožen sa obrtajem mlina u sekundi zapravo frekfencija svih jedinki u mlinu u (Hz), dakle,  $\frac{jedinke}{obrt} = \frac{jedinke}{c} =$  $s^{-1} = Hz$ . Sprovedenim analizama granulometrijskih sastava iz svih vrsta mlinova sa kuglama uočili smo da se broj zrna u njima kreće između  $3 \cdot 10^{11}$  do  $3 \cdot 10^{14}$ jedinki. Iz podataka o granulometrijskom sastavu SiO2 (tabela 2), koji daje ukupan broj jedinki u laboratorijskom mlinu, možemo izračunati molarnu energiju. Ukupan broj jedinki po obrtaju mlina je 6,03E+12 i zbog toga njihova frekfencija iznosi  $\frac{6.03E+12}{5} \cong 6E+12$  s<sup>-1</sup>, jer se mlin obrće 1  $\frac{obrt}{5}$ , pa je broj jedinki koji se u svakoj sekundi obrne daju frekfenciju od 6E+12 Hz. Broj zrna je izračunat tako što je aproksimativno uzeto da je zrno oblika sfere (lopte), pa je određen srednji prečnik ds u m. Zatim je izračunata zapremina jednog zrna Vz u m<sup>3</sup>. Nakon toga je upotrebom gustine sirovine, o dobijena masa jednog zrna mz u kg. Kada se masa određene klase krupnoće podeli sa masom zrna dobija se broj zrna u klasi nz. Vrednosti pomenutih veličina za sve klase krupnoće prikazane su u tabeli 2. Na kraju je dobijen zbirni podatak o broju zrna. Za granulometrijski sastav

kvarca, koji je prikazan u radu, tražena promena molarne energije je prikazana proračunom sa podacima iz tabele 2.

Tabela 2. Granulometrijski sastav SiO<sub>2</sub> iz procesa mlevenja u laboratorijskom mlinu za celokupan uzorak iz mlina

| KI    | asa   |          |          | Masa  | Odse  | Pros  | Srednji | prečnik d₅ | Zapremina V.   | Густина               | Masa jednog     | Broj zrna        |
|-------|-------|----------|----------|-------|-------|-------|---------|------------|----------------|-----------------------|-----------------|------------------|
| krup  | noće  | Masa, g  | Masa, kg | %     | %     | %     | mm      | m          | m <sup>3</sup> | $\rho \frac{kg}{m^3}$ | zrna, m₃,<br>kg | po<br>klasama n₃ |
| 3,32  | 2,38  | 12,2727  | 0,012273 | 1,1   | 1,1   | 100   | 2,8535  | 0,0028535  | 1,233E-09      | 2650                  | 3,26812E-06     | 3,76E+03         |
| 2,38  | 1,6   | 13,3884  | 0,013388 | 1,2   | 2,3   | 98,9  | 1,99    | 0,00199    | 4,183E-10      | 2650                  | 1,10847E-06     | 1,21E+04         |
| 1,6   | 1,19  | 14,5041  | 0,014504 | 1,3   | 3,6   | 97,7  | 1,395   | 0,001395   | 1,441E-10      | 2650                  | 3,81845E-07     | 3,80E+04         |
| 1,19  | 0,83  | 20,0826  | 0,020083 | 1,8   | 5,4   | 96,4  | 1,01    | 0,00101    | 5,469E-11      | 2650                  | 1,4492E-07      | 1,39E+05         |
| 0,83  | 0,63  | 18,9669  | 0,018967 | 1,7   | 7,1   | 94,6  | 0,73    | 0,00073    | 2,065E-11      | 2650                  | 5,47184E-08     | 3,47E+05         |
| 0,63  | 0,4   | 21,1983  | 0,021198 | 1,9   | 9     | 92,9  | 0,515   | 0,000515   | 7,25E-12       | 2650                  | 1,92126E-08     | 1,10E+06         |
| 0,4   | 0,3   | 23,4297  | 0,02343  | 2,1   | 11,1  | 91    | 0,35    | 0,00035    | 2,276E-12      | 2650                  | 6,03072E-09     | 3,89E+06         |
| 0,3   | 0,2   | 36,8181  | 0,036818 | 3,3   | 14,4  | 88,9  | 0,25    | 0,00025    | 8,294E-13      | 2650                  | 2,19778E-09     | 1,68E+07         |
| 0,2   | 0,153 | 29,0082  | 0,029008 | 2,6   | 17    | 85,6  | 0,1765  | 0,0001765  | 2,918E-13      | 2650                  | 7,73391E-10     | 3,75E+07         |
| 0,153 | 0,104 | 35,7024  | 0,035702 | 3,2   | 20,2  | 83    | 0,1285  | 0,0001285  | 1,126E-13      | 2650                  | 2,98452E-10     | 1,20E+08         |
| 0,104 | 0,09  | 42,3966  | 0,042397 | 3,8   | 24    | 79,8  | 0,097   | 0,000097   | 4,844E-14      | 2650                  | 1,28375E-10     | 3,30E+08         |
| 0,09  | 0,074 | 56,9007  | 0,056901 | 5,1   | 29,1  | 76    | 0,082   | 0,000082   | 2,927E-14      | 2650                  | 7,75544E-11     | 7,34E+08         |
| 0,074 | 0,063 | 81,4461  | 0,081446 | 7,3   | 36,4  | 70,9  | 0,0685  | 0,0000685  | 1,706E-14      | 2650                  | 4,52102E-11     | 1,80E+09         |
| 0,063 | 0,053 | 107,1072 | 0,107107 | 9,6   | 46    | 63,6  | 0,058   | 0,000058   | 1,036E-14      | 2650                  | 2,74441E-11     | 3,90E+09         |
| 0,053 | 0,045 | 122,5039 | 0,122504 | 10,98 | 56,98 | 54    | 0,049   | 0,000049   | 6,245E-15      | 2650                  | 1,65483E-11     | 7,40E+09         |
| 0,045 | 0,038 | 120,9419 | 0,120942 | 10,84 | 67,82 | 43,02 | 0,0415  | 0,0000415  | 3,794E-15      | 2650                  | 1,00533E-11     | 1,20E+10         |
| 0,038 | 0,032 | 101,5287 | 0,101529 | 9,1   | 76,92 | 32,18 | 0,035   | 0,000035   | 2,276E-15      | 2650                  | 6,03072E-12     | 1,68E+10         |
| 0,032 | 0,025 | 87,91716 | 0,087917 | 7,88  | 84,8  | 23,08 | 0,0285  | 0,0000285  | 1,229E-15      | 2650                  | 3,25611E-12     | 2,70E+10         |
| 0,025 | 0,02  | 80,3304  | 0,08033  | 7,2   | 92    | 15,2  | 0,0225  | 0,0000225  | 6,046E-16      | 2650                  | 1,60218E-12     | 5,01E+10         |
| 0,02  | 0,01  | 76,76016 | 0,07676  | 6,88  | 98,88 | 8     | 0,015   | 0,000015   | 1,791E-16      | 2650                  | 4,74721E-13     | 1,62E+11         |
| 0,01  | 0,005 | 4,4628   | 0,004463 | 0,4   | 98,88 | 1,52  | 0,0075  | 0,0000075  | 2,239E-17      | 2650                  | 5,93402E-14     | 7,52E+10         |
| 0,005 | 0     | 12,49584 | 0,012496 | 1,12  | 100   | 1,12  | 0,0025  | 0,0000025  | 8,294E-19      | 2650                  | 2,19778E-15     | 5,69E+12         |
|       |       | 1115,7   | 1,1157   | 100   |       |       |         |            |                |                       |                 | 6,03E+12         |



Slika 2. Grafički prikaz granulometrijskog sastava iz tabele 2

$$E_{više} - E_{niže} = h * v = 6,626 * 10^{-34} Js * 6,0 \cdot 10^{12} \frac{1}{s} = 3,995 * 10^{-21} J \quad (9)$$

Dobijeni rezultat ne izgleda kao velika energija, ali ako je izrazimo kao molarnu energiju, onda ta energija ima realni karakter u  $\frac{J}{m}$ ;

$$\Delta E = 6,022 * 10^{23} mol^{-1} * 3,995 * 10^{-21} J = 2406,08 \frac{J}{mol} = 2,4 \frac{kJ}{mol}$$
(10)

Jedinice navedene veličine možemo konvertovati u jedinice za gustinu energije W<sub>i</sub>:

$$\Delta W_i = \frac{\Delta E \frac{J}{mol}}{M_{Sio_2} \frac{kg}{mol}} \tag{11}$$

Gde je:

$$M_{SiO_2} \quad \text{-molarna masa SiO}_2 \quad M_{SiO_2} = 60 \frac{g}{mol} \text{ ili } 0,06 \frac{kg}{mol}$$
$$W_i = \frac{\Delta E \frac{J}{mol}}{M_{SiO_2} \frac{kg}{mol}} = \frac{2406,08 \frac{J}{mol}}{0,06 \frac{kg}{mol}} = 40101,28 \frac{J}{kg} ili \frac{Ws}{kg} ili \frac{kWs}{t} \cdot \frac{1h}{3600s} = 11,14 \frac{kWh}{t}$$

#### Proračun srednje veličine zrna granulometrijskog sastava

Koristeći Borov uslov frekfencije [2] možemo dobiti i podatak o srednjoj veličini zrna. Iz dijagrama, slika 2, već vidimo da je srednja veličina zrna oko  $d_s = 50 \ \mu m$  što u metrima iznosi  $d_c = 5 \cdot 10^{-5} m$ .

Korišćenjem jednačine 2, dolazimo do jednačina 6 i 7 [1].

$$\Delta \nu = \frac{c}{\lambda} , Hz \tag{12}$$

gde je:

c - brzina svetlosti c =2,998  $10^8$  ms<sup>-1</sup>,  $\lambda$  - talasna dužina infracrvenih talasa.

Brzinu svetlosti povezujemo sa frekfencijom i dobijamo talasnu dužinu u metrima.

$$\lambda = \frac{c}{\nu} = \frac{3 \cdot 10^8 \frac{m}{s}}{6 \cdot 10^{12} \frac{1}{s}} = 5 \cdot 10^{-5} m, \text{или } 50 \mu m \tag{13}$$

z jednačine 4 uočavamo da talasna dužina ima vrednosti kao srednja veličina zrna, slika 2.

#### Proračun specifične površine granulometrijskog sastava

Za navedeni primer usitnjavanja SiO2 možemo izvršiti proračun specifične površine. Površinska energija kvarca iznosi  $\sigma = 1 \frac{J}{m^2} (\sigma = 1000 \cdot 10^{-7} \frac{J}{cm^2})$ 

tabela 3). Poznavajući molarnu  $\Delta E$  i površinsku energiju  $\sigma$  računskim putem dolazimo do površinske koncentracije [12]  $\Gamma \left(\frac{mol}{m^2}\right)$  i specifične površine S  $\left(\frac{m^2}{p}\right)$ :

$$\Gamma = \frac{\sigma[\frac{J}{m^2}]}{\Delta E[\frac{J}{mol}]} = \frac{1\frac{J}{m^2}}{2406,08\frac{J}{mol}} = 0,000415614 \frac{mol}{m^2}, \tag{14}$$
$$S = \frac{1}{\Gamma\frac{mol}{m^2}M_{SlO_2}\frac{g}{mol}} = \frac{1}{0,000415614\frac{mol}{m^2}60\frac{g}{mol}} = 40,10\frac{m^2}{g}$$
или S  $\cong \mathbf{4} \cdot \mathbf{10}^5 \frac{cm^2}{g} (15)$ 

#### Uporedna analiza rezultata sa literaturnim podacima

Literaturni podaci o radu mlinova sa kuglama navedeni u tabeli 3 [4] [8], bez obzira na koji način je do njih došlo, imaju velikih sličnosti sa izračunatim emitovanim molarnim energijama, srednjom veličinom zrna i specifičnom površinom minerala.

| Tabela 3. Utrošena energija dispergovanja $\mathbf{W}_i$ u $\frac{J}{g}$ , minerala Mosove skale |
|--------------------------------------------------------------------------------------------------|
| tyrdoće pri različitoj disperznosti                                                              |

|          | Dovrčinska                      | S                 | pecifična pov     | ršina smeše       | mineralnih z      | rna               |
|----------|---------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|          | r Ovisiliska                    | -                 |                   | $_{a} cm^{2}$     |                   |                   |
| Mineral  | - I                             |                   |                   |                   |                   |                   |
|          | $\times 10^{-7} \frac{y}{cm^2}$ | 1×10 <sup>4</sup> | 5×10 <sup>4</sup> | 1×10 <sup>5</sup> | 5×10 <sup>5</sup> | 1×10 <sup>6</sup> |
| Düamant  | 11400                           | 11,4              | 57,0              | 114               | 570               | 11400             |
| Dijamani | 1200                            | 1,2               | 6,0               | 12                | 60                | 120               |
|          | 1550                            | 1,55              | 9,3               | 15,5              | 93                | 155               |
| Korund   | 7000                            | 7,0               | 35,0              | 70,0              | 350               | 700               |
|          | 1600                            | 1,6               | 8,0               | 16,0              | 80                | 160               |
|          | 1080                            | 1,08              | 5,4               | 10,8              | 54                | 108               |
| Topaz    | 4000                            | 4,0               | 20,0              | 40,0              | 200               | 400               |
|          | 1200                            | 1,2               | 6,0               | 12,0              | 60                | 120               |
|          | 780                             | 0,78              | 3,9               | 7,8               | 39                | 78                |
| Kvarc    | 2200                            | 2,2               | 11,0              | 22,0              | 110               | 220               |
|          | 1000                            | 1,0               | 5,0               | 10,0              | 50                | 100               |
|          | 358                             | 0,36              | 1,8               | 3,58              | 18                | 35,8              |
| Ortoklas | 1200                            | 1,2               | 6,0               | 12,0              | 60                | 120,0             |
|          | 820                             | 0,82              | 4,1               | 8,2               | 41                | 82,0              |
|          | 176                             | 0,19              | 1,0               | 1,86              | 10                | 186,0             |
| Apatit   | 700                             | 0,7               | 3,5               | 7,0               | 35                | 70,0              |
|          | 650                             | 0,65              | 3,25              | 6,5               | 32,5              | 65,0              |
|          | 146                             | 0,15              | 0,73              | 1,5               | 7,3               | 15,0              |
| Fluorit  | 400                             | 0,4               | 2,0               | 4,0               | 20,0              | 40,0              |
|          | 590                             | 0,59              | 2,95              | 5,9               | 29,5              | 59,0              |
|          | 78                              | 0,08              | 0,39              | 0,78              | 3,9               | 7,8               |
| Kalcit   | 220                             | 0,22              | 1,1               | 2,20              | 11,0              | 22.0              |
|          | 460                             | 0,46              | 2,3               | 4,60              | 23,0              | 46,0              |
| Halit    | 39                              | 0,04              | 0,2               | 0,4               | 2,0               | 4,0               |
| гланс    | 150                             | 0,15              | 0,75              | 1,5               | 7,5               | 15,0              |

|      | 400 | 0,40  | 2,0   | 4,0  | 20,0 | 40,0 |
|------|-----|-------|-------|------|------|------|
|      | 25  | 0,025 | 0,125 | 0,25 | 1,25 | 2,5  |
| Talk | 80  | 0,08  | 0,4   | 0,80 | 4,0  | 8,0  |
|      | 350 | 0,35  | 1,75  | 3,5  | 17,5 | 35,0 |

U našem primeru smo imali izračunatu vrednost emitovane molarne energije mlina  $\Delta E = 2406,08 \frac{J}{mol}$ , a pošto se radi o SiO<sub>2</sub> onda je molarna masa  $M_{SiO_2}=0,06 \frac{kg}{mol}$ , tako da količnik ove dve veličine daje emitovanu gustinu energije od  $W_i=40101,28 \frac{J}{kg}$ . Kada ovu veličinu prilagodimo jedinicama za gustinu energije u tabeli 3 dobijamo  $W_i \cong 40 \frac{J}{g}$ . Uočavamo da za manju specifičnu površinu  $S \cong 4 \cdot 10^5 \frac{cm^2}{g}$  imamo nešto manju gustinu energije  $W_i \cong 40 \frac{J}{g}$  od one koja je data u literaturi  $S = 5 \cdot 10^5 \frac{cm^2}{g}$  i  $W_i = 50 \frac{J}{g}$ , što potvrđuje ispravnost hipoteze da možemo koristiti jednačinu 2, 7 i 9 za izračunavanje emisione i absorpcione energije, srednje veličine zrna i specifične površine [2] [8].

#### POLIMORFNE PROMENE MATERIJE I NJENE TERMODINAMIČKE KARAKTERISTIKE NASTELE PRI USITNJAVANJU

Za materije koje se javljaju u više oblika kažemo da su polimorfne [13]. Polimorfizam je kada se hemijski ista supstanca pojavljuje u više različitih kristalnih simetrija koje, analogno tome, imaju različite kristalne rešetke i predstavljaju različite mineralne vrste. U tabeli 4 prikazane su vrednosti raspoloživog rada (entalpije,  $\Delta H$ ), korisnog rada (Gibsove slobodne energije,  $\Delta G$ ) i gubitka toplote ( $\Delta S \cdot (-T) = -T \cdot \Delta S$ ) koje bivaju zabeležene kod raznih minerala prilikom mehaničkog usitnjavanja i zbog tog faznog prelaza (fp). Upoređujući podatke iz tabele 1 i tabele 4 vidimo da se radi o različitom redu veličine za pojedine minerale. Uočili smo da je teže razgraditi energiju kristalne rešetke, tabela 1 (za  $ZnS=3578\frac{kJ}{mol}$ , nego je narušiti mehaničkim energijom kao kod usitnjavanja, tabela 4 (isto za  $ZnS=202,7\frac{kJ}{mol}$ ). Gustina energije potrebna za *potpune* polimorfne ili fazne promene (pfp) je tada 5,7% od gustine energije kristalne rešetke. U prirodi se polimorfne promene dešavaju spontano,  $\Delta G < 0$ , što znači da je ravnotežni sastav daleko na strani produkata, ali su te promene povezane sa veoma dugim vremenskim periodima. Mlin sa metalnim kuglama u pokretu je na neki način katalizator procesa polimorfnih promena koji ubrzava reakciju minerala sa reagensima za flotaciju. Katalizator deluje na principu smanjenja energije aktivacije, pa je zbog toga sa katalizatorom ukupna energija aktivacije niža, što će biti prikazano u narednom tekstu rada.

Termodinamički argumenti polimorfnih promena dovode do sledećih rezultata:

- dolazi do opadanja energije kristalne rešetke minerala usled smanjenja entropije produkta reakcije i
- dolazi do promene Gibsove funkcije koja je jednaka maksimalnom električnom radu.

$$\Delta G = w_{e,maks} \tag{16}$$

Tabela 4. Polimorfne promene materije i njene termodinamičke karakteristike [4] prilikom mehaničkog usitnjavanja kada reaktanti u potpunosti pređu u produkte

| Polazni<br>materijal | Faza                | Prelaz<br>Kristalna struktura  | Gustina $\varrho$ ,<br>$\frac{g}{cm^3}$ | Entalpija obrazovan<br>ja A <sub>píp</sub> H, <mark>kJ</mark> | Gibsova<br>slobodna energija<br>obrazovanja<br>Δ <sub>πφπ</sub> G, <sup>kJ</sup> / <sub>mol</sub> | Entropija<br>reaktanta,S <sub>pe</sub><br><u>J</u><br>mol·K | Ентропија<br>реактанта,S <sub>пр</sub><br><u>J</u><br>mol · K | Gubitak<br>toplote<br>TΔS <u>kJ</u><br>mol |
|----------------------|---------------------|--------------------------------|-----------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------|
| SiO <sub>2</sub>     | Kvarc →<br>Koesit   | Heksagonalna →<br>Monoklinična | 2,65                                    | -858,6                                                        | -804,2                                                                                            | 224,26                                                      | 41,8                                                          | 54,4<br>54.0                               |
| TiO <sub>2</sub>     | Anataz →<br>Rutil   | Tetragonalna →<br>Tetragonalna | 3,9<br>4,2-5,2                          | -936,7<br>-942,2                                              | -882,4<br>-887,4                                                                                  | 231,82<br>234,1                                             | 49,7 50,3                                                     | 54,3<br>54,8                               |
| FeS <sub>2</sub>     | Pirit →<br>Markazit | Kubna →<br>Romboedarska        | 4,9<br>4,9-5,2                          | -171,4                                                        | -160,1                                                                                            | 90,8                                                        | 52,9                                                          | 11,3                                       |
| ZnS                  | Sfalerit→           | Kubna →                        | 3,94                                    | -202,7                                                        | -198,1                                                                                            | 83,33                                                       | 67,9                                                          | 4,6                                        |
|                      | Vurcit              | Heksagonalna                   | 3,98                                    | -189,3                                                        | -184,7                                                                                            | 73,13                                                       | 57,7                                                          | 4,6                                        |
| HgS                  | Cinabarit →         | Trigonalna →                   | 8,0                                     | -58,1                                                         | -48,8                                                                                             | 108,89                                                      | 77,7                                                          | 9,3                                        |
|                      | metacinabarit       | Kubna                          | 7,7                                     | -53,9                                                         | -46,2                                                                                             | 109,03                                                      | 83,2                                                          | 7,7                                        |
| HgO                  | Žuti →              | ?→                             | 11,3                                    | -90,1                                                         | -58,3                                                                                             | 179,75                                                      | 73,1                                                          | 31,8                                       |
|                      | Crveni              | Rombična                       | 11,08                                   | -90,6                                                         | -58,5                                                                                             | 179,56                                                      | 71,9                                                          | 32,1                                       |
| CaCO <sub>3</sub>    | Kalcit →            | Trigonalna →                   | 2,71                                    | -1205,7                                                       | -1127,7                                                                                           | 354,51                                                      | 92,9                                                          | 78,0                                       |
|                      | Aragonit            | Rombična                       | 2,95                                    | -1205,9                                                       | -1126,6                                                                                           | 354,57                                                      | 88,6                                                          | 79,3                                       |
| PbO                  | Žuti →              | Rombična →                     | 8,7                                     | -217,6                                                        | -188,3                                                                                            | 167,67                                                      | 69,4                                                          | 29,3                                       |
|                      | Crveni              | Tetragonalna                   | 9,51                                    | -219,0                                                        | -189,1                                                                                            | 167,99                                                      | 67,7                                                          | 29,9                                       |

# Gibsova funkcija reakcije polimorfnih promena kada reaktanti u potpunosti pređu u produkte

*Gibsova funkcija* prikazana je jednačinom 8 [1]. Ta veličina se sastoji iz dva dela. Jedan deo je promena entropije u samoj materiji. Drugi deo pokazuje opseg rasipanja energije u okolini i uvek se može izračunati iz reakcijske entalpije:

$$\Delta_r G = \Delta_r H - T \Delta_r S \tag{17}$$

Glavna karaktristika naučnih aksioma je da kvalitativnu potvrdu uspemo da izrazimo na kvantitativan način, što će se prikazati u tekstu koji sledi.

Jedan primer za polimorfnu promenu sfalerita, odnosno prelaz kubnog ZnS u heksagonalni ZnS zbog usitnjavanja, pri gustini  $\varrho_{ZnS}=3,94\frac{g}{cm^3}$ , predstavljamo u obliku hemijske reakcije, jednačina 9. Kao dovoljno blizak model za potpuni fazni prelaz  $\beta_{ZnS}$ -sfalerit u  $\alpha_{ZnS}$ -vurcit pišemo;

kubni 
$$\beta_{ZnS} \leftrightarrow$$
 heksagonalni  $\alpha_{ZnS} \Delta_{pfp} H = -202.7 \frac{kJ}{mol}$  pri 25 °C (18)

Promene entropija kada reaktanti u potpunosti prelaze u produkte mogu se vrlo jednostavno izračunati odgovarajućom kombinacijom entropija navedenih u tabeli 4. Molarna promena entropije u materijalu po definiciji je:

$$\Delta_{\rm pfp} S_{\rm materijala} = S_{\rm heks.} - S_{\rm kubni} = 67,9 - 83,33 = -15,43 \frac{J}{mol \cdot K}$$
(19)

Gde su:

- entropija kubnog ZnS kao reaktanta je S<sub>kubni</sub> = 83,33  $\frac{J}{mol^{*}K}$
- entropija heksagonalnog ZnS kao produkta nakon mlevenja je S<sub>heks</sub>.= 67,9  $\frac{J}{mol^*K}$
- Promena entropije u okolini je po definiciji:  $\Delta_{p/p} S_{okolina} = \frac{\Delta_{fp} H}{T} \frac{J}{mol^* K}$

$$\Delta_{pfp} S_{\text{okolina}} = -\frac{-202700 \frac{J}{mol}}{298,15 \, K} = 679,86 \frac{J}{mol * K} \tag{20}$$

Ukupna promena entropije je  $\Delta_{pfp} S_{okolina} = \Delta_{pfp} S_{okolina} + \Delta_{pfp} S_{materijala}$ 

$$\Delta_{\rm pfp} S_{\rm ukupno} = 679,86 + (-15,43) = 664,63 \frac{J}{mol * K}$$
(21)

Promena Gibsove slobodne energije po definiciji  $\Delta_{pfp}S_{ukupno}$  pomnoženo sa (– T).  $\Delta_{pfp}G=(-T)\cdot\Delta_{pfp}S_{ukupno}$ , pa prema tome:

$$\Delta_{\rm pfp} G = -298,15 \cdot 664,63 = -198099,8 \frac{J}{mol} \text{ ili} - 198,1\frac{kJ}{mol}$$
(22)

Sve vrednosti za  $\Delta_{pfp}G$  u tabeli 4 su dobijene na isti način poznavajući entalpije  $\Delta H$  i entropije reaktanata S<sub>pe</sub> i produkata S<sub>pr</sub>.

# Polimorfne promene materije usled usitnjavanja kada reaktanti ne pređu u potpunosti u produkte

Eksperimentom je utvrđeno da temperatura u mlinu poraste prilikom usitnjavanja rude za 2°C i inicira nepotpune polimorfne ili fazne promene (*nfp*) minerala čije termodinamičke karakteristike sada imaju manje vrednosti od onih kada reaktanti u potpunosti pređu u produkte. Dakle, ovde imamo slučaj da reaktanti ne prelaze u potpunosti u produkte, pa zato znamo da je u materijalu entropija kristalne rešetke porasla za:

$$\Delta_{\rm nfp} S_{\rm materijal} = S_{\rm heks} - S_{\rm kubni} = 83,43 - 83,33 = 0,1 \frac{J}{mol \cdot K}$$
(23)

Gde su:

• entropija kubnog ZnS kao reaktanta je,  $S_{kubni} = 83,33 \frac{J}{mol * K}$ 

Entropija faznog prelaza materijala kada reaktanti ne prelaze u potpunosti u produkte je određena linearnom interpolacijom, jer se zna da je za 298,15 °C  $\Delta_{pfp}S_{materijal} = -15,43 \frac{J}{mol \cdot K}$ , a sa 300,15°C je tada  $\Delta_{pfp}S_{materijal} = -15,53 \frac{J}{mol \cdot K}$ . Razlika je 0,1 $\frac{J}{mol \cdot K}$ . Entropija heksagonalnog ZnS kao produkta nakon mlevenja dobija se iz jednačine 17 kada se na entropiju kubnog ZnS kao reaktanta doda entropija faznog prelaza materijala  $\Delta_{pfp}S_{materijal} = 0,1$ , i dobije S<sub>heks</sub>=83,43 $\frac{J}{mol^*K}$ .

Promena entropije u okolini kada reaktanti ne pređu u potpunosti u produkte ima manju vrednost od one kada reaktanti u potpunosti pređu u produkte, jer se promena Gibsove funkcije, jednačina 11, zasniva na emitovanom raspoloživom radu mlina [14] Wi =  $\Delta$ H. Kada se emituje energija koju isporučije mlin tada fazni prelaz kubnog ZnS u heksagonalni ZnS postaje endotermna reakcija. Predviđamo da emisiona energija mlina koja je upotrebljena za mlevenje SiO<sub>2</sub> sada može biti raspoloživa energija mlina za usitnjavanje minerala sfalerita, Wi=  $\Delta_{npj}$ H = 2406,08  $\frac{J}{mol} \approx 2,4 \frac{kJ}{mol}$ 

$$\Delta_{npf} \mathbf{H} = 2406,08 \frac{J}{mol} \cong 2,4 = \frac{kJ}{mol}$$
(24)

Promena entropije u okolini je po definiciji  $\Delta_{npf} S_{\text{okolina}} = -\frac{\Delta_{nfp}H}{T} \frac{J}{mol*K}$ 

$$\Delta_{npf} S_{\text{okolina}} = -\frac{2406,08 \frac{J}{mol}}{298,15 K} = -8,07 \frac{J}{mol * K}$$
(25)

Ukupna promena entropije kada reaktanti ne pređu u potpunosti u produkte je:

$$\Delta_{\rm nfp} S_{\rm uku} = \Delta_{npf} S_{\rm okolina} + \Delta_{\rm nfp} S_{\rm mater} = -8,07 + (0,1) = -7,97 \frac{J}{mol * K}$$
(26)

Promena Gibsove slobodne energije po definiciji je  $\Delta_{nfp}S_{ukupno}$  pomnoženo sa (– T), pa prema tome:

$$\Delta_{\rm nfp}G = (-T) \cdot \Delta_{nfp}S_{\rm ukupno} = -298,15K \cdot (-7,97\frac{J}{mol * K})$$
  
= 2376,3  $\frac{J}{mol} \approx 2,4\frac{kJ}{mol}$  (27)

# Predviđanje ravnotežnog svojstva reakcije polimorfnih promena usled usitnjavanja

Zavisnost ukupne entropije od sastava reakcijske smeše prikazana je na slici 3. Pomoću slike i brojčane vrednosti iz jednačine 21 vidimo da je ukupna promena entropije koja prati fazni preobražaj kubnog u heksagonalni sfalerit negativna i mala vrednost, što ukazuje da reakcija nije spontana i da se ne odvija u potpunosti.



Slika 3. Zavisnost ukupne entropije od sastava reakcijske smeše

Veza između standardne molarne Gibsove funkcije neke reakcije i njene konstante ravnoteže K dolazi iz termodinamike i glasi [1]:

$$\Delta_r G^\theta = -RT lnK \tag{28}$$

$$lnK = \frac{\Delta_{nfp}G^{\theta}}{-RT} = \frac{2376,3\frac{J}{mol}}{-2479,12\frac{J}{mol}} = -0,9585, tada \, je \, \mathrm{K} \cong 0,38$$
(29)

Absorbovana gustina energije u materijalu je uzrok faznog prelaza, a ravnotežni sastav smeše definisan je sa konstantom ravnoteže, K=0,37. Na osnovu izračunate vrednosti konstante ravnoteže možemo zaključiti da se reakcija ne odvija u potpunosti.

#### Smanjenje otpornosti kristalne rešetke

Prilikom usitnjavanja pritisak u mineralu lokalno se povećava, toplota odlazi iz uređene celine (materije) i materija se kontrahuje, nastaje lom [3]. U novim jedinkama, nastalim iz jedinke koja je bila pod pritiskom, menja se sastav u površinskom sloju tako da niskotemperaturni  $\beta$  ZnS prelazi u visokotemperaturni  $\alpha$  ZnS. U elastičnom i plastičnom području posle loma molekule materije su neuređenije zbog zaostalih naprezanja, a entropija nastalih jedinki minerala je zbog toga veća ( $S_{pr} > S_{re}$ ). Dolazi do opadanja energije kristalne rešetke minerala. Usled porasta pritiska u materijalu i temperature u mlinu dolazi i do promene ravnotežnog sastava reakcije. Količinski udeo  $\alpha_{ZnS}$  se povećao sa promenom pritiska u materijalu kao što je prikazano na slici 4.



Slika 4. Količinski udeo heksagonalnog sfalerita u ravnoteži, kubni ZnS ↔ heksagonalni ZnS

U slučaju kada se polimorfne promene dešavaju usled emitovane gustine energije mlina što znači da se reakcija ne odvija u potpunosti, onda se smanjuje otpornost kristalne rešetke za  $\Delta_{nfp}G=2376,3\frac{J}{mol}\cong2,4\frac{kJ}{mol}$ , što predstavlja 0,07% od energije kristalne rešetke  $H_{ZnS}=3578\frac{kJ}{mol}$  tabela 1.

# Porast potencijala sveže obrazovanih površina minerala [1][7] usled usitnjavanja

Kao što je već napisano, ali zbog njihovih važnosti, jednačine 10 i 22 ponavljamo u tekstu. Veza između standardne molarne Gibsove funkcije neke reakcije i njene konstante ravnoteže K dolazi iz termodinamike i glasi [1]:

$$\Delta_r G^{\theta} = -RT lnK \tag{30}$$

Jednačina koja daje odnos između konstante ravnoteže i standardne e.m.s.  $E^{\theta}$  je [1]:

$$RTlnK = zFE^{\theta} \tag{31}$$

50 Beograd, 8. decembar 2023.

Gde je:

| $E^{\theta}$ | - | standardni elektrodni potenci | jal 25 °C | CuV,                                      |
|--------------|---|-------------------------------|-----------|-------------------------------------------|
| F            | - | Faradejeva konstanta          | -F=L·e    | $e = 9,648 \times 10^4 \text{ Cmol}^{-1}$ |
| L            | - | Avogadrova konstanta          | -         | 6,022x10 <sup>23</sup> mol <sup>-1</sup>  |
| e            | - | naboj protona                 | -         | 1,602 x10 <sup>-19</sup> C                |

Jednačine 22 i 25 se mogu spojiti eliminacijom RTlnK što daje jednačina 26, a predviđa jednačina 7,  $\Delta G = w_{e,maks}$ .

$$\Delta_r G^\theta = -zFE^\theta \tag{32}$$

Promena Gibsove funkcije kada cink istiskuje bakar iz plave vode je - 212,8  $\frac{kJ}{mol}$ . Standardna elektromotorna sila (e.m.s.) koja odgovara redoks-reakciji elektro ćelije je tada 1,103V.

U polimorfnoj promeni sfalerita kada reaktanti ne pređu u potpunosti u produkte imamo promenu Gibsove funkcije faznog prelaza:

$$\Delta_{\rm nfp}G = (-T) \cdot \Delta_{nfp}S_{\rm ukupno} = -298,15K \cdot (-7,97\frac{J}{mol * K})$$
  
= 2376,3 $\frac{J}{mol} \approx 2,4\frac{kJ}{mol}$  (33)

Usled polimorfne promene sfalerita vidimo da je došlo do promene e.m.s. [1], saglasno jednačini 27:

$$E^{\theta} = \frac{\Delta G_{nfp}}{-zF} = \frac{2376.3 \frac{J}{mol}}{-2 \cdot 9.648 \cdot 10^4 \frac{C}{mol}} = -0.0123 \frac{J}{C} \cong -0.012 V \qquad (27)$$

Elektromotorna sila e.m.s. minerala sfalerita povećala se sa vrednosti, prikazanoj u tabeli 5  $E^{\theta}$ = -0,20 do -0,40 V, na vrednost  $E^{\theta}$ = -0,012 V. Ova činjenica ukazuje da se sfalerit iz redukujuće jedinke usitnjavanjem transformisao u manje redukujuću jedinku.

Tabela 5. Potencijali minerala ( $E^{\theta}$ u V) u odnosu na bakarnu elektrodu po Gottschtalk-Buchler-u mereni u destilovanoj vodi [7][11]

| Mineral    | Formula                          | Potencijal,V | Mineral   | Formula                          | Potencijal , V        |
|------------|----------------------------------|--------------|-----------|----------------------------------|-----------------------|
| Markazit   | FeS <sub>2</sub>                 | +0,37        | Bornit    | Cu <sub>2</sub> FeS <sub>3</sub> | +0,17                 |
| Argentit   | AgS                              | +0,23        | Galenit   | PbS                              | +0,15                 |
| Halkopirit | CuFeS <sub>2</sub>               | +0,18-+0,30  | Halkozin  | Cu <sub>2</sub> S                | +0,12                 |
| Enargit    | Cu <sub>3</sub> AsS <sub>4</sub> | +0,18-+0,23  | Nikelin   | NiAs                             | +0,02                 |
| Molibdenit | MoS <sub>2</sub>                 | +0,20        | Antimonit | Sb <sub>2</sub> S <sub>3</sub>   | <b>-0,17 do -0,60</b> |
| Pirit      | FeS <sub>2</sub>                 | +0,18        | Sfalerit  | ZnS                              | -0,20 do -0,40        |

### ZAKLJUČAK

Da bi se dezintegrisala kristalna rešetka potrebno je emitovati energije koje su prikazane u tabeli 1. Očigledno je da su ove energije višestruko veće od onih energija koje su potrebne da bi se izvršile polimorfne promene materije u mineralima, tabela 4, kada reaktanti u potpunosti pređu u produkte. Usled polimorfnih promena koje se odvijaju u potpunosti, opadanje energije kristalne rešetke sfalerita iznosilo bi 5,7% u odnosu na energiju kristalne rešetke, tabela 1. Usled polimorfnih promena koje se ne odvijaju u potpunosti opadanje energije kristalne rešetke sfalerita iznosi 0,07% u odnosu na energiju kristalne rešetke iz tabele 1 koja iznosi  $H_{ZnS}=3578 \frac{kJ}{mat}$ 

Povećanje potencijala sveže obrazovanih površina je  $E^{\theta}$  = -0,012 V što je preko 20 puta veća vrednost u odnosu na srednju veličinu potencijala minerala iz tabele 5. Srednja vrednost potencijala minerala sfalerita *iz tabele je*  $E^{\theta}$ =-0,30 V. Kada usled usitnjavanja dođe do pomenutih faznih promena kristalne strukture tada pojedini minerali imaju više ili manje izmenjene termodinamičke karakteristike koje pozitivno ili negativno utiču na procese flotiranja.

Novostvorene površine minerala, već pri obrazovanju u procesu usitnjavanja, podvrgavaju se dejstvu materija rastvorenih u vodi, prvenstveno dejstvu jona  $H^+$  i  $OH^-$ , a zatim dejstvu rastvorenog  $O_2$  i  $CO_2$  [7].

Brzina oksidacije minerala u vodi je različita i zavisi od energije kristalne rešetke i potencijala sveže obrazovanih površina minerala. Brzina oksidacije raste sa opadanjem otpornosti kristalne rešetke i povećanjem potencijala sveže obrazovanih površina minerala, što se i desilo sfaleritu usled polimorfne promene zbog usitnjavanja [7].

Da bi se ksantat efikasnije vezao za mineral potrebna je veća brzina delovanja kiseonika u aktiviranju površine [7] (Tagartova, Švedova i Plaksinova teorija), što je omogućeno polimorfnom promenom materije. Brzina oksidacije raste sa smanjenjem energije kristalne rešetke i porastom potencijala sveže obrazovanih površina što je i potrebno za procese flotiranja, a dokazano u radu.

### LITERATURA:

- 11. P.W.Atkins, M.J.Clugston, Principles of Physical Chemistry, Lincoln College, Oxford 1989.
- M.Petrov, LJ.Andrić, M.Sokić, Z.Gulišija, V.Matković, J.Stojanović, Meha nohemijsko-termički postupak dobijanja maskirnog pigmenta, Zaštita Materijala br. 55, 4/2014, Beograd, str. 413-419, ISSN 0351–9465, UDC:620.197.6:667.636.1, COBISS.SR–ID4506626.
- 13. V.I.Molčanov, T.S.Jusupov, Fizičeskie i himičeskie svojstva tonkodispergovanih mineralov, Moskva, Nedra,1981.

- 14. V.I.Molčanov, O.G.Slezneva, E.N.Žirnov, Aktivacija mineralov pri izmeljčrniji, Moskva, Nedra, 1988.
- 15. N.Magdalinović, Energija usitnjavanja, T.F.Bor, 1992.
- 16. Aviani, Energija, nove mogućnosti, Institut za fiziku, http://www.ourenergy.com/hr/
- 17. Mira Manojlović Gifing, Teorijske osnove flotiranja, Beograd, 1969.
- 18. Milan Petrov, Istraživanje kinetike mlevenja u uslovima mehanohemijskog aktiviranja minerala, Doktorska disertacija, Beograd, 2003
- 19. M.Grbović, N.Magdalinović, Procesna oprema drobljenja i mlevenja mineralnih sirovina, Institut za bakar Bor i R. I. Beograd, Bor, 1980.
- 20. Stanko Rozgaj, Procesni aparati i uređaji, IGKRO Svjetlost, Sarajevo, 1980.
- 21. Milan Ilić, Specijalna mineralogija drugi deo, ICS, Beograd, 1975.
- 22. Ivan Bajalović, Osnovi fizičke hemije, Građevinska knjiga, Beograd, 1978.
- 23. Svetislav Janjić, Predrag Ristić, Mineralogija, Naučna knjiga, Beograd, 1995.
- 24. K Tkačova, Mechanical Activation of Minerals, Elsevier, 1989.